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Supplementary material 1. Description of the multivariate 
metamodelling methodology 
 
Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) [1] is a generic method for 

multivariate metamodelling that yields compact, interpretable approximations of input-output 

relationships for complex, high-dimensional mathematical models, even when the models’ input-

output relationships are highly nonlinear. The N-way HC-PLSR provides this metamodelling 

functionality for models that yield N-way outputs, e.g. spatiotemporal data for a number of state 

variables obtained from simulations under various input conditions. The motive and mechanisms 

behind the N-way HC-PLSR method will here be outlined. 

 
1.1 Motive and basic concepts 

Models and metamodels  

Mathematical models of complex systems tend to be high-dimensional and nonlinear, and the more 

detailed and realistic the mathematical models become, the more difficult the results are to 

overview and compute. Metamodelling can alleviate this, by providing both graphical overview and 

computational compaction (speed-up of computations).  

Biological systems are often modelled by sets of coupled ordinary differential equations 

(ODEs), or for spatiotemporal models, by sets of coupled continuous partial differential equations 

(PDEs) and/or spatiotemporally discrete grid systems (Finite Elements). Such models have high-

dimensional inputs and even higher-dimensional outputs, and usually give nonlinear input-output 

relationships. They call for multivariate metamodelling for computational compaction and 

behavioural overview, but the metamodelling must be able to handle unforeseen, abruptly nonlinear 

input-output relationships.  

A mathematical model may be symbolised by the deterministic equation 

 

Outputs=M(Inputs)          (S0a) 

 

where M represents the mathematical model, e.g. a nonlinear ODE-based model. Inputs represents 

model parameters, initial conditions (e.g. initial state values) and/or various computational controls 

(e.g. integration accuracy required), while Outputs represents the outputs obtained from simulations 

with model M. The outputs of interest could e.g. be time series of state variables and their spatial 

distributions, various quantities calculated from these state trajectories (e.g. time to peak of the 

curve, volume under the curve etc.), as well as computational performance (“cpu time to 

convergence”).  

With many Inputs and Outputs related through a complex nonlinear dynamic model M, tools 

to overview, assess and simplify the use of this model are needed. Multivariate metamodelling is a 

handy tool for simplifying the use and construction of high-dimensional nonlinear mathematical 

models. Methodology for multivariate metamodelling will here be described and motivated, starting 

with simple linear and bilinear metamodelling tools and ending with the more powerful and 

versatile method N-way HC-PLSR introduced in this paper. 
 

Classical and inverse metamodels 

Based on Inputs and Outputs from computer simulations with model M, two main types of 

multivariate metamodels of model M may be developed: 

Classical (“causal”) metamodels may be written 

 

Outputs=C(Inputs) + C         (S0b) 


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where function C(.) symbolises the Classical metamodel and C is the lack-of-fit between the 

Outputs generated by the actual model M and the approximations generated by the metamodel C(.). 

 Inverse (“predictive”) metamodels may be written 

 

Inputs=I(Outputs) + I         (S0c) 

 

where function I(.) symbolises the Inverse metamodel and I is the lack-of-fit between the Inputs to 

model M used in the simulations and the input values predicted from the Outputs, using metamodel 

I(.). 

The classical and inverse metamodelling have different application arenas. Developed from 

the same set of simulation results, the two metamodel types Outputs=C(Inputs) and Inputs=I 

(Outputs) reveal different aspects of the behaviour of the model M. Therefore, in our opinion, the 

two methods should be used in parallel.  

The classical metamodel Outputs=C(Inputs) shows how sensitive the Outputs are to changes 

and uncertainty in M’s various Inputs, and can reveal possible “model sloppiness”. The inverse 

metamodel Inputs =I(Outputs), in contrast, reveals possible covariation patterns - expected as well 

as unexpected - among the many Outputs, and can simplify parameterisation of models, and thereby 

provides a basis for future model improvement. Generally speaking, inverse metamodelling is 

superior to the classical metamodelling for finding how to split the metamodel into less complex, 

local sub-models in order to handle nonlinearities. Therefore, inverse metamodelling will be 

employed for optimising the nonlinearity-handling of the classical N-way HC-PLSR metamodelling 

(see section 1.7). In combination, the two metamodelling approaches make a powerful tool to 

analyse and describe the dynamic model behaviour, and in the following, we will describe how to 

combine classical and inverse metamodelling. First of all, metamodels are addressed in two distinct 

phases: Calibration and prediction. 

 

 “Calibration”: Building the metamodel(s)   

Based on Inputs and Outputs from a sufficiently comprehensive set of simulations, classical and 

inverse metamodels C(.) and I(.) can be developed by multivariate statistical data analysis. This 

training phase is here called “calibration”. Like for the calibration of e.g. chemical or physical 

measuring instruments, this is simplified if the multivariate metamodelling method yields relatively 

simple, low-dimensional input-output descriptions suitable for graphical inspection in a relatively 

low number of plots, and include understandable but powerful validation tools to avoid over-

parameterisation. What distinguishes metamodelling from e.g. calibration of instruments is that 

model M is often deterministic in the sense that the relationship Outputs=M(Inputs) has no noise - 

no random contributions apart from minor integrator errors etc. On the other hand, if the 

relationship Outputs=M(Inputs) is highly nonlinear, the metamodelling requires particular methods 

that give adequate handling of these nonlinearities. That is a main motive for the metamodelling 

method N-way HC-PLSR developed here. 

 

“Prediction”: Using the metamodel(s) 

The metamodels C(.) and I(.), obtained from the calibration stage, may later be fitted to new data of 

the same general kind. Thereby, model output can be predicted for new combinations of input 

values, and new input values can be predicted from new sets of output data. The latter is useful for 

parameterising models using experimentally measured output data (see below).  
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Practical use of multivariate metamodelling 

In short, multivariate metamodelling concerns how to generate models of models. This may e.g. be 

used for: 

 Providing insight: overviewing how a nonlinear dynamic model behaves in practice, and 

how it can be simplified or improved through re-parameterisation. This was demonstrated 

for 2-way data in [1, 2], and is shown in the present paper for 3-way data. As described in 

[3], metamodelling can also be used to find biologically relevant parameter ranges and 

operative domains for dynamic models. 

 Computational compaction: A successfully developed classical metamodel is useful for 

replacement of a slow computation OutputsNew=M(InputsNew) of the original model under 

new input conditions [4, 5]: 

 

OutputsNew=C(InputsNew)         (S0d) 

 

This classical metamodel prediction gives accurate results, provided that the InputsNew are 

within the range of Inputs used in the calibration phase, that Inputs where sampled at 

sufficient density in this relevant range during calibration to allow local interpolation, and 

that the metamodelling method was indeed able to give an adequate description of the 

(nonlinear) Input-Output relationships. 

 Better fit to observations: A successfully developed inverse metamodel may give a fast and 

robust estimation of unknown input parameters InputsNew from empirically measured outputs 

[4]. Provided that model M(.) is capable of generating Outputs=M(.) that can be related to 

those observed in OutputsMeasured, the inverse metamodel has the potential to yield fast 

predictions: 

 

InputsNew =I(OutputsMeasured)         (S0e) 

 

This non-iterative prediction process can be a lot simpler than estimation of InputsNew by 

traditional iterative fitting of the nonlinear model Outputs=M(.) to data OutputsMeasured. 

Moreover, if several different input value combinations give equally good fit to the 

OutputsMeasured data, e.g. the look-up approach described in [4] can be used to identify these. 

Finally, if model M(.) is not capable of generating outputs corresponding to OutputsMeasured, 

a combination of classical and inverse metamodelling can be used to identify outliers, as 

well as indicate how the model can be improved. 

 Model comparison: Metamodelling can also be used for assessing the consequences of 

introducing changes to a mathematical model in a model construction process. New data 

(InputsNew and/or OutputsNew) may come from new input conditions for model M(.) or from 

simulations with comparable input conditions from another model to be compared to M(.). 

When both the new inputs and the new outputs are known, the new data may be fitted to 

both C(.) and I(.), for comparison with the old calibration data. The multivariate residuals C 

and I for the new simulations reveal the discrepancies (this approach is not pursued in the 

present paper). 
 

1.2 The methodological background for the N-way HC-PLSR 

Multivariate metamodelling of a model Outputs=M(Inputs) (eq. S0a) as used in e.g. [1, 2, 6] relies 

heavily on the use of vector- and matrix algebra to develop and combine regression-based 

metamodels of nonlinear dynamic systems. A tensor-based modelling approach that handles N-way 

output data will be described in detail below.  

The N-way Hierarachical Cluster-based Partial Least Squares Regression (N-way HC-

PLSR) method just to be described, combines various terms and successful data analytical tools  
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from the field of chemometrics, to be used in a different field – computational biology. The tools 

were originally developed for the study of complex chemical systems. The basic methodology and 

approaches of chemometrics, as e.g. described by Martens & Næs [7], has traditionally been used 

for comprehensive, but pragmatic explorative investigation and quantitative description. The causal 

structural or functional properties characteristic for data generated within computational biology 

represent a new area of applications for the chemometrics “toolbox” (that also shares several tools 

and approaches with computational statistics and machine learning). The strength of the 

chemometrics “toolbox” is its strong emphasis on real-world relevance, and on bringing the 

domain-specific knowledge of the system expert (chemist or biologist) into the data analysis via 

extensive graphics and prior knowledge. 

Metaphorically, the bilinear data analysis tools used here can be considered as pragmatic 

information sieving devices –like fishermen’s trawling nets – pulled by the explorer through an 

ocean of raw data - designed to catch the bigger fish while letting the small fry go. When working 

in complex systems that may be difficult to overview, the resulting data-driven models are only 

intended to represent the most desired catch, and the lack-of-fit residuals are summarised 

statistically. Once the overview has been obtained, more details can be pursued by more focused 

analysis, as demonstrated in the case study in Supplementary material 3. 

The data driven models thus obtained can be regarded as compact, informative and 

potentially useful. However, they cannot be considered as true, neither in their structural form nor 

in parameter values. Although the linear model is followed by some laws of physics and chemistry, 

the estimated values of its many parameters are more or less meaningless individually. However, 

when applied together, they often provide accurate predictions and useful overviews. In 

combination with appropriate background knowledge, they facilitate access to meaningful results 

and corresponding insights into the studied system. This pragmatic cognitive orientation differs 

somewhat from traditional use of mathematical modelling in many fields of science. In e.g. physics, 

nonlinear dynamic models - their mathematical structures and their parameter values - are often 

intended to represent real phenomena – albeit in a simplified form. 
 

1.3 Terminology and notation  

Multivariate metamodelling concerns how to approximate the input-output relationships of a 

complex mathematical model M(.) by less computationally demanding data-driven statistical 

metamodels that are easier to overview and interpret. “Models of models” of course poses some 

terminology challenges, e.g. how to distinguish between the parameters in the original model M(.) 

and the statistical parameters of the metamodels. In the following, we have chosen to name the 

metamodel parameters by their technical descriptions (means, scores, weights, loadings, regression 

coefficients, residuals etc.), since they are generic, while the original model M(.) is characterised in 

terms of its Inputs and Outputs, specified in more detail when needed. 

Moreover, to distinguish between the two directions in metamodelling, the classical 

modelling direction, Outputs=C(Inputs) + C, and the inverse direction, Inputs=I(Outputs) + I, are 

discussed in a common statistical regression framework, Y=XB +F, and subscripted for clarity when 

needed.  
The choice of letters and symbols is a problem for interdisciplinary activities like 

metamodelling. In chemometrics, a pragmatic notation and terminology is normally used. A core of 

communally accepted symbols, i, j, k, a, X, Y, T, W, P, Q, E and F are often used, with only small 

local tradition nuances. In the present outline of the central chemometric data analysis methods that 

are the building blocks of the N-way HC-PLSR method, we stick to the notation tradition outlined 

in e.g. [7] for multivariate calibration, with some small modifications from path modelling [8] 

traditions required in order to extend this to N-way nonlinear multivariate metamodelling. 

 First, least-squares based regression analysis will be outlined briefly, along with subspace 

approximation by Principal Component Analysis (PCA) [9, 10], and combined into the multivariate 
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subspace regression method Principal Component Regression (PCR) [11]. Partial Least Squares 

Regression (PLSR) [7, 12–14], an extension of PCR developed to increase the Y-relevance of the 

estimated subspaces, will be motivated and summarised. Two extensions of the PLSR will be 

explained - N-way PLSR (NPLSR) [15, 16] to handle N-way arrays of simulation data, and 

Hierarchical Cluster-based PLSR (HC-PLSR) [1] to handle nonlinear subspace regression; these 

two are combined in the new N-way HC-PLSR developed here. Finally, the combined use of 

classical and inverse N-way HC-PLSR will be detailed, to allow quantitative metamodelling of 

highly nonlinear models M(.). 

In data sets, variables (descriptors, attributes, observed quantities) are represented as 

columns, while observations (cases, samples, objects) are represented as rows. Here, scalars and 

one-way column vectors are denoted by lower-case characters in italics (e.g. xik or yij), two-way 

matrices as upper-case characters in italics (e.g. X), and N-way tensors by upper-case bold-face 

characters in italics. Indices i=1,2,..,N represent observations (objects, cases, simulation 

conditions), j=1,2,…,J  and k=1,2,…,K represent regressand variables Y and regressor variables X, 

respectively, while index a=1,2,..,A represents abstract components (estimated latent 

variables/factors; see below). Predicted quantities are denoted using “hat” symbols (e.g. Ŷ ).    

 
1.4 Multivariate linear regression, principal component analysis and partial least squares 

regression 

The linear regression model  

The multiple linear regression model relates a regressand or response variable #j,  yj, to a set of K 

different regressor variables X=[xk, k=1,2,…,K] via a linear structure model with regression 

coefficient vector bj =[bkj, k=1,2,…,K]: 

jjjk

K

k

kj fXbbfbxby
jj

 


0

1

0         (S1a) 

Here yj =[yij, i=1,2,…,N] and X =[xik, i=1,2,…,N; k=1,2,…,K] represent different variables sorted so 

that their rows i=1,2,…,N describe the same set of observations or samples; yj is of dimension (N x 

1), X is (N x K) and the lack-of-fit residual vector fj is (N x 1).  

For a set of J response variables Y=[yj, j=1,2,…,J] =[yij, i=1,2,…,N; j=1,2,…,J] 

simultaneously related to a common set of K regressor variables X, the corresponding multivariate 

linear regression model is given by: 

 

FXBbY  0                                                    (S1b) 

 

where matrices Y and F are of dimension (N x J), and regression coefficient matrix B is (K x J).  

 

Data approximation, reliability balancing and linearisation by pre-processing 

The bilinear data analysis or modelling may be thought of as a generalised Taylor expansion of the 

– for us unknown – structure lying hidden within and between variable sets X and Y in the N 

available observations. In the metamodelling framework, this “hidden” structure is defined by the 

model, Outputs=M(Inputs). The bilinear model is therefore developed around the mean of each 

variable. In metamodelling, this ensures that good approximation is prioritised in the parameter 

region of most interest.  

Linear and bilinear regressions employ ordinary least-squares (OLS) fit in various ways, 

something that requires balancing of the relevance and precision of the different data in X and Y. 

First of all, the present data analysis employs OLS across object rows i=1,2…,N, assuming that the 

X- and Y-data from the different observations (e.g. simulations) have approximately the same 

precision and relevance. If that is not the case, it is possible to replace the OLS by weighted or 

generalised least squares in each step of the methods to be presented here. Details on that is beyond 
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the scope of the present paper, since it usually suffices that irrelevant, peculiar or erroneous 

simulations are detected as outliers and kept out. 

Moreover, in bilinear data analysis, the OLS principle is also used across columns 

k=1,2,…,K in X and j=1,2,…,J in Y. The resulting approximation model is therefore sensitive to the 

precision level of different variables within X and within Y used in the metamodel development. 

The user must therefore ensure that the scaling of the variables within X and within Y correspond to 

their expected or desired relevance and accuracy. Otherwise, the obtained bilinear model may be 

dominated by variables irrelevant for description of the analysed system due to large differences in 

absolute values or variances between the included variables.  

Two different default scaling approaches are commonly used – either leaving the input 

variables in X and Y unchanged because they are all assumed to be equally precise and relevant, or 

standardising all variables to a standard deviation of one, giving them equal chance of contributing 

to - and being approximated by - the bilinear regression model. Thus, in the following description of 

the multivariate metamodelling methods, each of the variables X and Y will for simplicity be mean-

centred. As mentioned, the variables can also be scaled to have comparable relevance/uncertainty as 

follows: 
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where ks and js represent the scaling factors that balance the levels of error or variance between the 

variables within X and within Y, e.g. the standard deviations over the N observations.  

Likewise, it is presently assumed that the structure lying hidden within and between the 

present variable sets X and Y can be adequately approximated by a linearly or bilinearly additive 

model (sums and differences of a set of underlying variation phenomena). This means that types of 

variation not well represented by this additive modelling ought to be compensated for in a 

linearisation (pre-processing) stage. One example of this is when observations i=1,2,…,N present 

“sideways” shifts between different X-variables k=1,2,…,K in the fixed K-dimensional framework 

of a certain spatial representation, such as motion of observations in the K fixed pixel positions of a 

video camera or widely different temporal delays in a set of output time series. The additive 

approximation modelling is simplified if such phenomena are corrected for in a parameterised pre-

processing, e.g. by motion estimation and motion compensation/warping [17]. However, non-

additive pre-processing was not used in this paper. 

It should be noted that a wide range of types of nonlinearities within and between the X- and 

Y-variables can be handled well by the local/regional bilinear data analysis approach to be presented 

below, and therefore do not necessitate cumbersome pre-processing. Therefore, with the present 

methodology, the user can choose to deal with e.g. highly nonlinear X-Y relationships and/or effects 

on Y of complicated interactions between X-variables in two alternative ways - either by increasing 

the complexity of the modelling sequence (first linearising in a pre-processing step, then using 

bilinear regression), or instead by increasing the complexity of the bilinear regression itself [1] 

(using polynomial bilinear models, combining several local bilinear regression models (each of 

which may be polynomial), or increasing the dimensionality of each bilinear model). Only the use 

of several local bilinear models and/or higher dimensionality of each bilinear model will be focused 

on here. 

For mean-centred and scaled X-and Y-variables, the linear multivariate regression model eq. 

(S1a-b) becomes 
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FBXY  00            (S1d) 

 

The linear regression model obtained via bilinear modelling  

Different statistical methods may be used for estimating the regression coefficients B and the lack-

of-fit residuals F. The choice depends on the assumptions made about the nature of the lack-of-fit 

residuals in F and about the relationships between the variables in X and in Y. Linear least-squares 

based regression methods are particularly versatile and simple, and are therefore used here.  

Generally speaking, least-squares based regression methods make few, simple and natural 

assumptions: for instance, the lack-of-fit Y-residual elements fij are expected to be negative or 

positive with equal probability, so that their average is expected to be zero in the long run. 

Moreover, least-squares regression methods put the highest emphasise on reducing the Y-residual 

elements fij for observations i that have the most clearly distinguishable X-data (referred to as high 

“leverage”), i.e. with unique row vectors xi=[xik, k=1,2,…,K] far from the mean of the other 

observations.  

For residuals known to be independent, random and identically normally distributed, a more 

formal statistical motivation for the least squares methodology can also be made. In metamodel 

approximation of the input-output patterns of a deterministic model, many small nonlinear 

discrepancies between the model and its metamodel approximation may be expected to add up to 

apparently random, more or less normally distributed residuals, due to the central limit theorem. 

However, this statistical prerequisite is not necessary for the practical use of the principle of least 

squares, as long as subsequent statistical model validation and hypothesis testing is not based on 

rigid theoretical normality assumptions. 

However, other assumptions may also be required, implicitly or explicitly, beyond these 

general least-squares assumptions. Different least-squares based regression methods make different 

additional assumptions, e.g. about possible patterns of collinearity between the X-variables (and to 

some extent also between the Y-variables). The traditional, full-rank OLS regression solution, often 

called Multiple Linear Regression (MLR), 00

1

00 ')'( YXXXB  , assumes that all the X-variables 

vary independently of each other, so that )'( 00 XX can be inverted at full rank. This is often not the 

case, for instance if X represents model outputs, or inputs in an unbalanced subset of simulations 

from an initially balanced experimental design. Hence, estimation methods are required that can 

handle collinear regressors (and/or regressands).  

The most traditional approach, stepwise regression, works technically but can give very 

misleading interpretations due to selection of non-causative, but correlated, variables instead of the 

causative variables. Statistical methods like e.g. ridge regression [18], Lasso [19] and Elastic nets 

[20] reduce this problem, but do not provide sufficient graphical insight into the different 

covariation patterns hidden in the data, at least not in their standard form. Reduced-rank subspace 

regression, which we focus on in this paper, offers both collinearity handling and good 

opportunities for graphical interpretation.  

The two most common subspace regression approaches are the bilinear methods PCR [11] 

and PLSR [7, 12–14]. PCA [9, 10], on which PCR is based, is a well-known method in many fields 

of science, and PLSR is an extension of PCR. Therefore, the PCR will here be used as a backdrop 

for explaining and motivating the PLSR, which in turn is the basis for the Hierarchical Cluster-

based PLSR [1] developed to handle nonlinearities, and its present N-way extension. 

 

PCA, PCR and the bilinear regression model 

In bilinear regression, the independence assumption is not applied for the individual variables in X, 

but instead on a set of linear combinations of the X-variables. These “super-variables” or estimated 

latent X-variables - the Principal Components– are here referred to as “score vectors from X” or 
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“PCs”, and denoted TXA=[tx,1,…, tx,a,…, tx,A], A ≤ K. Each of the score vectors tx,a is defined as a 

weighted sum of the mean-centred X-variables, 

 

 ax

K

k

akxkax vXvxt ,0

1

,,0,, *


        (S2a) 

 

where each weight vector axv ,  is of size (K x 1). For a set of a=1,2,…,A PCs this can be written:  

 



TXA  X0VXA            (S2b) 

 

The sequence of A X-weight vectors VXA =[ vx,1,…, vx,a,…, vx,A] is obtained by combining the X- and Y-

data in a way that depends on prior knowledge about the system. For instance, in PCR, each 

consecutive weight vector axv ,  is defined so that component axt , explains as much of the remaining 

variation in X as possible; Y is ignored at this stage (which is identical to a PCA on X). Other 

bilinear regression methods, such as the PLSR and its nonlinear and N-way extensions; only differ 

in how the consecutive weight vectors akxv ,,  are defined (see below).  

In all these bilinear regression methods, these score vectors tx,a, a=1,2,…,A from X are, in 

turn, used for describing the pre-processed variables in Y according to the following model: 

 



Y0  tx,aqa '
a1

A

  FA           (S3a) 

 

This amounts to a multivariate linear regression of Y on TXA: 

 



Y0 TXAQA 'FA           (S3b) 

 

The so-called Y-loadings Q (J x A) are estimated by OLS regression of Y0 on TXA , minimising, for 

each Y-variable, the sum of the squared Y-residuals FA: 

 



QA Y0 'TXA (TXA 'TXA )
1         (S3c) 

 

For more comprehensive graphical interpretation of the obtained regression solution, the pre-

processed variables in X are likewise modelled in terms of their relationship to these estimated 

latent variables from X: 

 



X0  tx,a pa '
a1

A

  EA           (S4a) 

 

i.e. a linear regression of X on TXA: 

 



X0 TXAPA 'EA           (S4b) 

 

The OLS solution minimising, for each X-variable, the sum of the squared residuals in the X-

residuals EA is: 

 



PA  X0 'TXA (TXA 'TXA )
1         (S4c) 
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This reveals the reason why e.g. PCR is called a bilinear regression method: Eq. S4b shows that the 

set of X-variables is approximated by a so-called “bilinear” structure model 



TXA PA ', so named 

because it represents a linear model in both TXA and PA. Figure S1 illustrates the bilinear modelling 

of X, in terms of the vector expression in eq. S4a and the matrix expression in eq. S4b. 

 

 
Figure S1. Illustration of bilinear models in vector and matrix notation. 

Matrices are here illustrated as rectangles, while vectors are illustrated as lines. 

 

An equivalent, single-step summary of this A-dimensional bilinear regression model in eqs. 

S3-S4 can be written in terms of the rank A linear regression model: 

 

'ˆ
0,0 AA BXY             (S5a) 

 

where the (K x J) rank-A regression coefficient matrix BA  is defined by 

 

'AXAA QVB             (S5b) 

 

Optimising the complexity/dimensionality of the bilinear model 

The number of PCs in the bilinear regression model, A, reflects the number of independent variation 

phenomena in X that are Y-relevant. Said in another way, the PCs represent the A dimensions in the 

original K-dimensional X-space (spanned by the K X-variables) that are required in order predict Y 

optimally. In practice, one initially computes more PCs a=1,2,…..Amax than a priori deemed 

necessary; afterwards the optimal number of PCs (A) is determined by some type of internal 

statistical validation, e.g. cross-validation, relegating the contributions of all subsequent PCs A+1, 

A+2 ,…..Amax to the residuals EA and FA.   

Different systems for grouping how rows in X and Y are systematically kept out for testing 

during cross-validation allow the model to be validated according to different statistical criteria. In 

multivariate metamodelling, this can be used for testing the metamodel’s ability to distinguish 

between different model versions, different model parameter combinations, different simulation 

conditions etc.   

 

Assessing the uncertainty of the obtained regression model parameters 

Summarising the model perturbations obtained during cross-validation gives pragmatic, so-called 

“jack-knife” estimates of how difficultly modelled variations in the X- and Y-data lead to 

uncertainty (inaccuracy or imprecision) in the resulting regression model. The jack-knife estimation 

of the variance/covariance of the linear model elements in AB  and 
A

b0 is described in [14]. 
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Graphical interpretation   

The main patterns of sample similarities and differences are seen in plots of pairs or triplets of the 

first few columns in 



TXA  (called “score-plots”). The interpretation of these systematic patterns can 

be enhanced through plots of the corresponding columns of AP  and AQ  (called “loading-plots”). 

Graphical inspection of the columns # j=1,2,…,J in BA and their uncertainty estimates reveals how 

the X-variables are combined in order to predict each of the Y-variables. Conversely, inspecting the 

rows # k =1,2,…,K in BA and their uncertainty estimates shows how each X-variable # k is used for 

predicting the J different Y-variables. Unmodelled phenomena in X and Y, e.g unexpected outliers, 

can be seen in residual vectors iAiA fe ,  in matrices AE , AF , in combination with the observations’ so-

called leverage 



hi,A  tx,i,A (TXA 'TXA )
1tx,i,A ' , i=1,2,…,N. 

 

Prediction: Applying the bilinear regression model to new observations  

Bilinear prediction of YNew from XNew in new observations, e.g. new inputs or new empirical 

measurements, requires the following steps: First, for each X-variable, pre-process the new 

observations by applying the previously computed mean-centering and scaling coefficients from the 

calibration phase (from eq. S1c): 

 

kkNewkNewk sxxx /)( ,,0,   

(S6a) 

 KkxX NewkNew ,...,2,1,,0,,0           

 

Then, based on the model’s previously estimated X-weights 



VXA , predict the latent variables of the 

new observations: 

 

XANewXA, VT NewX ,0           (S6b) 

 

Finally, multiply these with the model’s Y-loadings (eq. S6c) and add the model’s Y-mean and 

rescale (eq. S6d), to predict YNew using A components:   

 

'ˆ
,,,0 ANewXANewA QTY            (S6c) 

 

Jjysyy jjjj ,...,2,1,ˆˆ
,0           (S6d) 

 

 The X-residuals are obtained by  

 

',,0, ANewXANewANew PTXE           (S6e) 

 

These residuals ANewE , are important for evaluating the fit of the new observations to the obtained 

regression model, i.e. whether they are outliers (outside the object range calibrated for). In 

situations where this is unnecessary to check, an equivalent but faster prediction of YNew from XNew 

is  

 

ANewNewA BXY ,0,,0
ˆ            (S6f) 

 

followed by the inverse pre-processing (eq. S6d). 
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PLSR: an extension of PCR to ensure more Y-relevant X-components  

As shown above, PCR consists of PCA of X0 to estimate the X-weights VXA, followed by OLS 

regression of Y on the PC scores TXA= X0VXA. PLSR only differs from PCR in how the X-weights, 

VXA, are defined: PCR yields VXA purely based on information from X, while PLSR defines VXA 

using both X- and Y-information. The PLSR is very similar to PCR, but merges the bilinear 

modelling of X and Y to maximise the amount of explained X-Y covariance. This is done by 

computing, in addition to the estimated latent X-variables 



TXA  tx,1,...,tx,a,...,tx,A  (eq. S2b), an 

auxillary set of latent Y-variables 



TYA  ty,1,...,ty,a,...,ty,A . These are defined by auxillary Y-weight 

vectors



VYA  vy,1,...,vy,a,...,vy,A : 
 

YAYA VYT 0            (S7a) 

 

To maximise the total explained X-Y covariance, the PLSR yields values of the weight vectors vx,a 

and vy,a so that the covariance between tx,a and ty,a is maximised for each consecutive component 

a=1,2,…,A. Thereby, intercorrelation patterns between variables within X and intercorrelation 

patterns between variables within Y are used as valuable information that stabilises the regression of 

Y on X, in the sense that the A first few X-score vectors TXA, used for modelling Y, have high Y-

relevance. 

After having been used in the iterative PLSR process defining X-weights VXA and X-scores 

TXA, the auxillary Y-weights VYA and score vectors TYA are only used for graphical interpretation; 

they are not part of the final bilinear regression model that predicts Y from X (eqs. S3-S6).  

 

Equivalent PLSR implementations  

The final prediction of the mean-centred and scaled Y-variables can thus be modelled from X. Two 

equivalent PLSR traditions exist. In one tradition, Y is modelled via predicted Y-scores YAT̂ . An 

auxillary, inner relation model is then used in order to link the X-scores and the Y-scores: 

 

AA HCTT XAYA             (S7b)  

 

with the least- squares solution 

 

YAXAXAXA TTTTC ''  A

1)(               (S7c)  

 

so that the predicted Y-scores are obtained as linear combinations of the X-scores: 

 

ACTT XAYA 
ˆ             (S7d)  

 

and the Y-predictions become: 

 

'ˆˆ
0 AYAQTY              (S7e)  

 

where the Y-loadings are estimated by the equivalent to eq. S3c: 

 
1

0 )('
 YAYAYA T'TTYQA

ˆˆˆ           (S7f) 

           

In the other tradition (see e.g. [7]), Y is modelled instead directly from the X-scores:  
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'ˆ
0 AXAQTY             (S7g) 

 

and the Y-loadings are estimated by the equivalent to eq. S3c: 

 
1

0 )(
 XAXAXAA 'TT'TYQ          (S7h) 

 

It should be noted that some authors use the term “PLS” to denote Partial Least Squares 

regression, while others use the same term for Partial Least Squares path modelling [8]. The former 

represents the purely data-driven, two-block multi-factor prediction method described above, while 

the latter represents a more theory-driven multi-block single-factor path modelling method. Hence, 

they represent two distinct methods and scientific traditions, even though they share Herman 

Wold’s original PLS concept of collecting maximal between-block covariance into a low-

dimensional latent structure model of the relationships underlying the observed data. We here 

distinguish between the two traditions as is done in [7], and abbreviate Partial Least Squares 

regression by the noun “PLSR”. The shorter term “PLS” is only used as an adjective, qualifying and 

clarifying the nature of estimated quantities from PLSR, as in “PLS scores”, “PLS loadings” etc. 

A number of equivalent numerical algorithms exist for PLSR. Usually, VXA is obtained in 

terms of an orthonormal basis set of so-called loading weight vectors WXA, from which VXA can be 

computed: 

  

VXA = WXA (PXA’WXA )
-1      

   (S7i) 

  

This is done in order to ensure that the score vectors in TXA are orthogonal to one another across the 

N samples (TXA‘TXA is diagonal) [13]. However, equivalent PLSR formulations with non-orthogonal 

score vectors TXA also exist, in which the bilinear model is written X0 = TXAWXA‘+EA [7]. In the 

PLSR version used in the present paper (SIMPLS [21], with the function "plsregress.m" in  

MATLAB
®
 [22] Statistics Toolbox™ v7.6), each of the auxillary Y-score vectors ty,a, originally 

obtained by eq. S7a, are orthogonalised with respect to the a-1 previous score vectors in TXA (i.e. 



TX ,a1) so that (TXA ‘TYA) is lower triangular.  

 
1.5 Local/regional bilinear modelling of highly nonlinear X-Y relationships 

For a model M with highly nonlinear Inputs-Outputs relationships, the straight-forward linear or 

bilinear type of regression described above cannot give a metamodelling approximation of 

sufficient accuracy. For this, several nonlinear PLSR extensions are available.  

One approach is to employ local linear modelling. It is well known that for a variable x and a 

variable y having a highly nonlinear relationship, a good regression approximation y  f(x) can be 

obtained if the x-y regression analysis is performed in terms of a combined set of locally linear 

models. This principle is also useful in multivariate regression situations. If the X-Y relationship 

varies a lot from region to region in the score space TXA, a highly nonlinear X-Y regression model is 

required, and the bilinear regression model is not applicable, in spite of its predictive and graphical 

advantages. However, if the score space is split into separate regions, each region can often be 

adequately described by the bilinear regression. This is the basis for Hierarchical Cluster-based 

Partial Least Squares Regression (HC-PLSR) [1], and is the approach used in the present paper. 

A “global” X-Y PLSR model is first developed including all N observations (a polynomial 

PLSR may be used, as in [1], but for simplicity that is not pursued here). Then, based on the 

obtained PLS scores XAT  (or alternatively, TYA), the N observations are grouped according to a 

cluster analysis. In our case we have chosen to use fuzzy C-means (FCM) clustering [23–26] for 

this purpose, since it allows the clusters to be partially overlapping, giving an estimated probability 
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for each observation to belong to the different clusters. For each cluster, a local PLSR model is then 

developed. The over-all model is optimised with respect to the number of local models required and 

to the number of PCs used in each local model. 

An alternative approach is to split each individual input and/or output variable into a number 

(e.g. 10) of binary indicator variables. If the collection of these “qualitative” indicator variables are 

used in X or in Y in the metamodelling, abrupt, non-monotonous input-output curvatures can be 

handled well [27]. By including also their cross-products, rather complex interaction effects can 

also be detected.  

Yet another approach is to extend the bilinear model to include explicit curvature. This can 

be done by replacing the linear X-Y mapping (eqs. S2b and S7a), by a nonlinear regression [28]. A 

simpler alternative is to extend the regressors X with new variables representing square terms and 

cross-products of the original X-variables (polynomial regression). This was combined with 2-way 

HC-PLSR in [1], but is skipped here, because it is more cumbersome for N-way data. 

 

Fuzzy clustering of simulations into more homogeneous subgroups 

As mentioned above, the N-way HC-PLSR employs locally linear metamodelling. This requires a 

segmentation and classification of the simulations into relatively homogeneous clusters suitable for 

linear regression. We have chosen fuzzy C-means (FCM) clustering [23–26] for this purpose, due to 

its flexibility. 

 In fuzzy cluster analysis a membership value uic is defined for each observation i and cluster 

c. The membership values are between 0 and 1, and must sum up to one for each observation i. In 

FCM the membership values are found by minimising  

 


 


C

c

N

i

ic

m

ic duMc
1 1

2 , 



m 1  subject to 



N

i

icu
1

1      

 (S8a) 

 

Here dic is the Euclidean distance between observation i and cluster c (i=1,2,…,N, c=1,2,…,C), m is 

a fuzzifier parameter that usually is set to be equal to 2.0. With m=1, FCM is the same as K-means 

clustering. Mc is minimised for a given U={uic} by setting the cluster centres vc equal to the fuzzy 

means (see equation S8b). Next, the membership values that minimise Mc for given distances 

D={dic} are calculated using equation S8c. Then the v’s and the d’s are updated. This continues 

until convergence. The procedure is initialised randomly.  

 








N

i

m

ic

N

i

i

m

ic

c

u

xu

v

1

1         (S8b) 

 
1

1

1

1

2

2































 

C

k

m

ik

ic
ic

d

d
u         (S8c) 

 

The basic FCM algorithm seeks spherical clusters. To find clusters with other shapes, modifications 

of the FCM algorithm must be applied, see for instance [29, 30].  
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1.6 N-way PCA (PARAFAC) and N-way Partial Least Squares Regression (NPLSR) 

N-way extension of the bilinear data model for one data array X 

The data-driven modelling of a 2-way data matrix X (N x K), in terms of a bilinear decomposition of 

X after mean–centering the K variables, was in (eq. S4b) written: X0=TXAPA’ + EA. In 

metamodelling, the outputs from the original dynamic model are often of “N-way“ nature, e.g. 3-

way arrays representing N simulation conditions x K1 state variables x K2 time points.     

For data that is well described by a low-dimensional tensor model, the N-way or “N-linear” 

analogue to the bilinear data approximation model is the so-called N-linear structure model, which 

gives data approximation models that are simple, compact and interpretable. As illustrated in Figure 

S2, the N-way tensor model of a 3-way data array X (N x K1 x K2) may, after mean-centering each 

of the K= K1 x K2 variables, be written 

  

 



X  X TXA ,NWayPA,NWay'EA,NWay        (S9a) 

 

for a model with A N-way “component tensors” or factors. These are defined by the set of A X-

weights 



VXA ,NWay, which in turn, define the set of X-score vectors, TXA,NWay: 

 



TXA ,NWay  X0VXA ,NWay          (S9b) 

 

The X-weights 



VXA ,NWay are obtained by an iterative algorithm that, for a given number of factors, A, 

minimises a certain, method-dependent criterion - under the restriction that the X-weight tensor for 

each component can be further decomposed into a bilinear model:  

 

 2

,

1
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2

,

1

,

2

1,

1

1,, |...| K

AX

K

AX

K

AX

K

AX

K

X

K

XNWayXA vvvv vvV                   (S9c) 

 

Here denotes the Khatri-Rao product, TXA,NWay is the X-scores (first mode factors) and 1

,

K

AXv  and 

2

,

K

AXv  are the loadings (or factors) for the second and third way/mode of X, respectively. 

 

 
Figure S2. Illustration of trilinear models in vector and tensor notation. 

Matrices are here illustrated as rectangles, vectors as lines and tensors as cubes. 
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PARAFAC (Parallel Factor Analysis) [31] is a prototype for N-linear data analysis, an N-

way extension of PCA. In PARAFAC, the criterion to be minimised is the sum of squares 

in NwayA,E . In analogy to PCA, where the X-scores per definition may be equivalently obtained by 

PA=VXA (eq. S2b), the PARAFAC model sets 



PA,NWay VXA ,NWay. Compared to the 2-way model (eq. 

S4b), the X-loading tensor is 

 

 21212

1

1

1, |...| K

A

K

A

K

A

K

A

KK

NWayA pppp PPP                   (S9d) 

 

where denotes the Khatri-Rao product, TXA,NWay is the X-scores and 1K

AP  and 2K

AP  are the loadings 

for the second and third mode of X, respectively. PARAFAC is not used in this paper; like PCA it 

does not involve the Y-variables. In addition, it converges relatively slowly. Instead, an N-way 

extension of PLSR is used here. 

 

N-way extension of PLSR: NPLSR 

The N-way analogue to PLS regression (NPLSR) to be used here [15, 16] is defined in equations 

S9a-S13 for 3-way data. Again, the decomposition of X is given by eq. S9a. For an NPLSR model 

with A components, the X-weights 



VXA ,NWay are determined by an iterative PLS-procedure so as to 

maximise the covariance between the X-scores NWayXA,T  (eq. S9b) and a corresponding matrix of 

auxillary Y-scores 



TYA,NWay. This process also defines NWayYA,V . In summary, the iterative estimation 

process employs a temporary model for the decomposition of Y:  

 



Y0 TYA,NWayVYA,NWay'FA,NWay         (S10a) 

 

where 



TYA,NWay and 



VYA,NWay are the Y-scores and Y-weights, respectively, with  

 

NWayYANWayYA ,0, VYT            (S10b)  

 

This temporary Y-model is only used during the iterative process that leads to the estimation of 



VYA,NWay and for graphical interpretation; it is not part of the final NPLSR model. EA,NWay and FA,NWay 

denote the residuals in X and Y, respectively, after having subtracted the A NPLSR factors. In the 

version of NPLSR used here, X may be N-way, Y may be N-way, or both.  

The X-loadings in the NPLSR are, upon convergence, simply defined as the X-weights  

 



PA,NWay VXA ,NWay          (S11) 

   

The final prediction of the mean-centred and scaled Y-variables can thus be modelled from X. 

Equivalent to eq. S7, there are two equivalent modelling conventions possible for the NPLSR. In 

one convention, Y is modelled via predicted Y-scores NWayYA,T̂ . An auxillary inner relation model is 

then used in order to link the X-scores and the Y-scores: 

 

AA HCTT  NWayXANWayYA ,,           (S12a)  

 

with the least- squares solution 

 

NWayYANWayXANWayXANWayXA ,,

1

,, )( T'TT'T  C A

            (S12b)  
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so that the predicted Y-scores are obtained as linear combinations of the X-scores: 

 

ACTT NWayXANWayYA ,,
ˆ             (S12c)  

 

Hence, the Y-predictions become: 

 

'ˆˆ
,,0 NWayANWayYA QTY             (S13a)  

 

where the Y-loadings are estimated by the equivalent to eq. S3c: 

 
1

0 )T'T(T'YQ
 NwayYA,NwayYA,NwayYA,NwayA,

ˆˆˆ         (S13b) 

           

In the other convention, Y is modelled instead directly from the X-scores:  

 

'ˆ
,,0 NWayANWayXA QTY            (S13c) 

 

and the Y-loadings are estimated by the equivalent to eq. S3c: 

 
1

0 )T'(TT'YQ
 NwayXA,NwayXA,NwayXA,NwayA,         (S13d)  

 

The A NPLSR factors possess many of the same properties as the PCs from 2-way PLSR. However, 

they are not orthogonal, and therefore one cannot estimate one component at a time. To optimise the 

model complexity, a range of full NPLSR models, with A=1,2,….,Amax factors, are fitted to the X-

Y data, and assessed for predictive validity e.g. by cross-validation, and the lowest number of 

factors giving sufficient predictive ability is chosen as the final model rank, A. 

 
1.7 N-way Hierarchical Cluster-based PLS regression (N-way HC-PLSR) 

Motivation 

The purpose of the N-way HC-PLSR is to provide prediction models )(X Y f  from data X and Y 

in a training set of N “calibration observations”, in a situation where X and/or Y are N-way arrays, 

and the X-Y relationship is expected to be highly nonlinear, i.e. the relationship between Y and X 

varies strongly between different regions of the X-space.  

The need for the new N-way HC-PLSR method for e.g. multivariate metamodelling is based 

on the following: The statistical prediction model )(X Y f  is to be used for a range of different 

types of Inputs and Outputs for model M(.); therefore the metamodelling tool must be rather 

versatile. Since it is to be used for interpretation through graphical inspection of the main 

relationship patterns within and between X and Y, the solution should be of low rank to facilitate 

graphical displays. The solution is also to be used for quantitative prediction of Y from X, both in 

the cross-validation sense for rank optimisation, and for prediction of Y from X for new 

observations. Hence, it should be statistically parsimonious to avoid over-fitting, and it must 

provide adequate handling of X-Y nonlinearities, which is here attained by a hierarchy of locally bi- 

or trilinear models. 

All the building blocks making up the N-way HC-PLSR have been described above. Here 

they are all combined to generate a generic metamodelling tool. Below, the Classical and Inverse 

metamodelling procedures used in this paper are expressed in explicit algebra. 
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Classical and inverse metamodelling  

As described in section 1.1, the data-driven metamodelling can be used in two different ways: 

Classical and Inverse metamodelling. This is the case for both the PLSR, NPLSR, HC-PLSR and 

N-way HC-PLSR metamodelling. While the PLSR and NPLSR are suitable for models M(.) with 

reasonably linear, or at least monotonous Inputs - Outputs relationships, the HC-PLSR and N-way 

HC-PLSR can also handle abruptly nonlinear Inputs - Outputs relationships. However, for 

successful classical metamodelling using N-way HC-PLSR, we have found it advantageous to use 

an intermediate inverse metamodel to ensure meaningful separation of the observations into local 

sets used for local regression analysis. In the following we give a more detailed description of the 

N-way HC-PLSR procedure, as used for inverse and classical metamodelling. 

Figure 2 in the main manuscript gives an overview of the most essential steps of the inverse 

(top) and classical (bottom) metamodelling, both in the calibration (training) phase (left) and the 

prediction (future use) phase (right). It also outlines how the inverse metamodelling can be used for 

improved handling of nonlinearities in the classical metamodelling by facilitating meaningful inputs 

to the cluster analysis. 

For data obtained from computer simulations with a nonlinear model, a clear causal 

direction is evident: its outputs are caused by its inputs: Outputs=M(Inputs) (eq. S0a), and not the 

other way around. It may thus be tempting to start with generating a metamodel of the nonlinear 

model in the same way, with X =Inputs and Y=Outputs in a classical N-way metamodel Y=C(X) + 

C (eq. S0b). This type of metamodelling is indeed useful for sensitivity analysis, as well as for 

computational compaction, since it allows fast prediction of Outputs from Inputs under new 

conditions. However, the N-way HC-PLSR may require an initial inverse metamodelling step in 

order to work optimally. This discussion therefore starts with the inverse metamodelling. 

 

Inverse metamodelling by N-way HC-PLSR 

Calibration (Fig. 2 (main manuscript)- top left): For models M with N-way Outputs and highly 

nonlinear Inputs – Outputs relationships, inverse metamodelling can be attained by straight-forward 

application of the N-way HC-PLSR. During calibration, a rough, global over-all metamodel is first 

developed, to be used for cluster analysis: The global X-weights 



VXA ,NWayare estimated by the 

NPLSR algorithm, along with the X-scores 



TXA ,NWay. These X-scores, which are linear combinations 

of the Outputs from M(.), are used for splitting the set of N simulation conditions into more 

homogeneous subgroups – in our case by fuzzy clustering (eq. S8). Then, within each of these 

clusters, a local inverse NPLSR metamodel is developed.  

 

Prediction: (Fig. 2 (main manuscript)- top right): New Inputs can be predicted from new 

Outputs by applying eq. S13, after a classification on predicted X-scores (from eq. S9b) and a 

selection of the appropriate local NPLSR model for each new observation. We use Quadratic 

Discriminant Analysis (QDA) [32] for classification in the present work. 

 

Classical metamodelling by N-way HC-PLSR 

Calibration (Fig. 2 (main manuscript)- bottom left): While the input parameters are usually easy to 

control in computer simulations, they do not in themselves tell much about the model M(.) 

behaviour. In contrast, the outputs form a better basis for clustering the simulations into local 

regions with less complex input-output relationships. The output information needed for the 

clustering can be summarised by the Outputs-scores A Output,T , which can be obtained in several 

ways. Useful estimates might be obtained directly during the classical metamodelling from the 

temporary Y-scores, as A Output,T = NWayYA,T  (from eq. S10b). However, we have instead chosen to 

estimate the Outputs-scores from an inverse metamodel on the same data, since a PLSR model is 

asymmetric- it is defined primarily based on the X-scores NwayXA,T , not the Y-scores. The inverse 
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modelling direction, in which Outputs =X, therefore gives more information about unexpected 

patterns among the model Outputs, and thus about how the input-output relationship differs under 

different Inputs conditions. Hence, we define A Output,T = InverseA, Output,T = NWayXA,T (from eq. S9b) from the 

inverse metamodel in which X = Outputs and Y= Inputs.  

Still, to be able to quantify InverseA, Output,T  in future situations in which unknown Outputs are to 

be predicted from known Inputs, we need to obtain the most informative scores from the scores of 

the known Inputs, which are obtained in the classical metamodelling as



TXA ,NWay. Hence, we relate 

the metamodelling scores NwayXA,T  from the inverse metamodelling to the metamodelling 

scores NwayXA,T  from the classical metamodelling during calibration as follows: With 

NWayXA,InverseA,Output, TT   from the inverse metamodel and NWayXA,ClassicalA,Input, TT   from the classical 

metamodel, a second-degree polynomial OLS regression model is employed in order to ensure a 

reasonable approximation of possible input-output nonlinearities. This polynomial conversion 

model is here symbolised by function F(.): 

 

 )(*

ClassicalA,Input,InverseA,Output, F TT         (S14a) 

 

with the OLS solution abbreviated as (.)F̂ : 

 

)ˆ(ˆ)(ˆˆ
,

*

NWayYAClassicalA,Input,InverseA,Output, FF T TT       (S14b) 

 

In this work, NWayYA,T̂ was used to estimate the function F(.), but according to eq. S12c, NWayYA,T̂ is a 

linear combination of NWayXA,T , making this an implicit part of (.)ˆ *F . The different simulations in 

the calibration set are split into the same local clusters as used in the inverse metamodelling, and 

separate classical metamodels are finally developed within each cluster. 

 

Prediction (Fig. 2 (main manuscript)- bottom right): New inputs are defined as XNew and 

projected into the classical metamodel for prediction of input scores NewNWay,XA,T  (eq. S9b). Defining 

NewClassical,A,Input,T NewNWay,XA,T , we obtain )(ˆˆ *

NewClassical,A,Input,NewInverse,A,Output, F TT  . From NewInverse,A,Output,T̂ , 

we can now classify each new object with respect to the different calibration clusters (here done 

using QDA). Once classified into one or more local calibration classes, the appropriate local 

classical calibration model is employed for prediction of the unknown OutputsNew from the known 

InputsNew.  

 
1.8 Concluding remarks 

The toolbox of methods for multivariate metamodelling, leading up to the N-way HC-PLSR, has 

here been described and motivated. The way we have combined the tools is not necessarily the 

optimal; a number of tools in the toolbox may well be replaced by other tools. However, the 

metamodelling methodology needs to address the following basic topics: the collinearity among 

Outputs and sometimes even among Inputs; the need for low-dimensional graphical model 

summaries; the importance of validation tools to avoid over-parameterisation of the metamodels; 

the need for good predictive ability, both for classical and for inverse metamodelling; the need for 

methods that handle highly nonlinear Inputs-Outputs relations, and the need for methods that handle 

N-way Inputs and/or Outputs. 
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Supplementary material 2. Statistics of the global classical and 
inverse metamodels of the mammalian circadian clock model 
 
2.1 Explained cross-validated X- and Y-variance 

In the inverse metamodelling, the 3-way state variable trajectory array was used as regressor (X) 

and the parameters were used as response variables (Y). A sequence of Y-relevant tensor products 

(NPLS factors) were generated from the N-way X-array, as described in Supplementary material 1, 

and used for prediction of the 2-way parameter combination data, inverting the causal direction 

from input parameters to model outputs. When applied to the data from the whole parameter range 

tested, this inverse NPLS regression indicated that 19 NPLS factors were needed, altogether 

explaining 50% of the cross-validated calibration set variance in the model inputs (Figure S3A).  

 Conversely, in the classical metamodelling, the parameters were used as regressors (X) to 

predict the state variable trajectories (Y), and a sequence of Y-relevant factors were generated from 

the matrix of model input parameters to predict the state variable trajectories in the N-way model 

output array Y. Based on Figure S3B, using 8 factors in the global classical NPLSR model was 

considered optimal, explaining 54.3% of the cross-validated calibration set variance in the state 

trajectories Y. 

 The dissimilarity in metamodel rank between the inverse and classical predictions reflected 

the difference in data structure between the input parameter- and model output data.  

 

 

A      B  

 
 
Figure S3. Results from the calibration of the inverse and classical global NPLSR 
metamodels.  

A) Explained cross-validated X- and Y-variance from the global inverse metamodel. Using 19 

NPLSR factors was considered optimal.  

B) Explained cross-validated X- and Y-variance from the global classical metamodel. Using 8 

NPLSR factors was considered optimal. 
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Supplementary material 3. Supplementary sensitivity analyses 
of the mammalian circadian clock model 
 

In order to obtain insight into the relationships between all varied input parameters and all the 

mammalian circadian clock state variables, separate sensitivity analyses with 2-way HC-PLSR were 

carried out for the state variables that were not described sufficiently well by the N-way HC-PLSR 

(which included all state trajectories simultaneously). 
 

3.1 Separate sensitivity analysis for the state variable IN 

The global second order polynomial PLSR model (from the HC-PLSR) obtained using the 

parameters and their cross-terms and second order terms as regressors, and the logarithm of the IN 

state trajectory (concentration of inactive complex between Per-Cry and Clock-Bmal1 in the 

nucleus) as response gave a mean R
2
-value over the trajectory of 0.94 in the test set prediction. 

There was no gain from using regional analysis of the input-output relationships for this state 

variable, and the regression coefficients for the 200 time steps in the trajectory from the global 

PLSR were therefore used as sensitivity measures (Figure S4). The fact that this state variable had 

to be logarithmised prior to the analysis may explain why it could not be described together with the 

other state variables in the N-way HC-PLSR metamodel. As shown in Figure S4, the parameters 

vmB, vmC, vmP, vdIN, k1 and k7 had the largest effects on the IN state trajectory behaviour. Several 

interactions between these parameters were also identified (Figure S4B). 
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A 

 
B 

 
Figure S4. Results from the sensitivity analysis of the state variable IN. 

Regression coefficients for A) the main effects of the circadian clock input parameters and B) the 

cross-terms and second order terms of the input parameters from the global PLSR-based sensitivity 

analysis of the state variable IN. The variables showing the largest effects on the state trajectory are 

marked with a star symbol. 

 
 
3.2 Separate sensitivity analysis for the state variable BN 

The global second order polynomial PLSR model obtained using the parameters and their cross-

terms and second order terms as regressors and the BN state trajectory (concentration of non-

phosphorylated Bmal1 protein in the nucleus) as response gave a mean R
2
-value over the trajectory 

of 0.93 in the test set prediction. There was only 2% gain in mean test set prediction R
2 

from using 

regional analysis, but both the global and regional regression coefficients from the HC-PLSR for 

the 200 time steps in the trajectory were still analysed (Figure S5 and S6). The results from the 

global PLSR-based sensitivity analysis shown in Figure S5 indicated that the state variable BN was 
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most sensitive to the input parameters vmB and vmP, and that there was an interaction between these 

two parameters and between vmB and k5. 

 

A 

 
B

 
Figure S5. Results from the global sensitivity analysis of the state variable BN. 

Regression coefficients for A) the main effects of the circadian clock input parameters and B) the 

cross-terms and second order terms of the input parameters from the global PLSR-based sensitivity 

analysis of the state variable BN. The variables showing the largest effects on the state trajectory are 

marked with a star symbol. 
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A

 
B 

 
Figure S6. Results from the regional sensitivity analysis of the state variable BN. 

Regression coefficients for A) the main effects of the circadian clock input parameters and B) the 

cross-terms and second order terms of the input parameters from the HC-PLSR-based sensitivity 

analysis of the state variable BN. The variables showing the largest effects on the state trajectory are 

marked with a star symbol in panel A) and named in panel B). The six plots correspond to the same 

six clusters as used in the N-way HC-PLSR described in the main manuscript.  
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According to Figure S6, both the sensitivity of the state variable BN to the circadian clock 

input parameters and the amount of interaction between the input parameters varied between the six 

clusters in the HC-PLSR. As was also seen in the N-way HC-PLSR, the state variable BN seemed to 

have negligible sensitivity to the parameter k7 in the parameter space analysed here, even though 

this parameter appeared in the differential equation for this state variable.  

 

 
3.3 Separate sensitivity analysis for the state variable PCNP 

The global second order polynomial PLSR model obtained using the parameters and their cross-

terms and second order terms as regressors and the logarithm of the PCNP state trajectory 

(concentration of phosphorylated Per-Cry protein complex in the nucleus) as response gave a mean 

R
2
-value over the trajectory of 0.92 in the test set prediction. There was no gain from using regional 

analysis of the input-output relationships for this state variable, and the regression coefficients for 

the 200 time steps in the trajectory from the global PLSR were therefore used as sensitivity 

measures (Figure S7).  In the same way as the state variable IN, PCNP had to be logarithmised prior 

to the analysis, and this may explain why it could not be described in the N-way HC-PLSR 

metamodel including all state variables.   
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A 

 
B

 
Figure S7. Results from the sensitivity analysis of the state variable PCNP. 

Regression coefficients for A) the main effects of the circadian clock input parameters and B) the 

cross-terms and second order terms of the input parameters from the global PLSR-based sensitivity 

analysis of the state variable PCNP. The variables showing the largest effects on the state trajectory 

are marked with a star symbol. 
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As shown in Figure S7, the parameters having the largest effect on the PCNP state trajectory 

were vmB, vmC, vmP, k1 and k3. Several interactions between the input parameters were also identified, 

including an interaction between vmB and vdIN. However, like in the N-way HC-PLSR, no sensitivity 

to the parameter vdPCN was detected, even though this parameter represented the rate of degradation 

of the phosphorylated Per-Cry complex in the nucleus (PCNP represented the concentration of this 

protein in the nucleus). 

 
3.4 Separate sensitivity analysis for the input parameter k7 

Additional simulations with the mammalian circadian clock model were carried out in order to 

explain the positive effect of k7 on CC seen in the NPLSR analysis in Cluster 1. All input parameters 

were kept constant at their mean values for Cluster 1, except k7 (rate constant for the formation of 

the inactive Per-Cry-Clock-Bmal1 complex), which was varied at 8 different levels (Figure S8). 

The results from the additional simulations are shown in Figure S9. 

 

 
 
Figure S8. Parameter settings for additional simulations with the mammalian circadian 
clock model. 

Parameter values for the eight new simulations are illustrated. The input parameter k7 was varied at 

eight different levels, while the other parameters were kept at their average values from Cluster 1 

(from the N-way HC-PLSR). 
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Figure S9. Results from the additional eight simulations with the mammalian circadian 
clock model. 

Concatenated state variable trajectories for the eight new runs corresponding to the parameter 

values in Figure S8. All state variables are given in nM units. 

 

 

The results above indicated that increasing k7 resulted in a very small decrease in CC and 

CCP, a clear decrease in PCN and PCNP and an increase in IN (which is very logical from the 

differential equation for IN). Hence, this analysis did not confirm the positive effect of k7 on CC seen 

in the NPLSR analysis in Cluster 1. In order to analyse this input-output relationship further, a 

separate PLSR-based sensitivity analysis was carried out for the state variable CC in Cluster 1 

(explaining 94.6% of the cross-validated Y-variance). The results are shown in Figure S10. 
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A 

 
B 

 
Figure S10. Results from the sensitivity analysis of the state variable CC in Cluster 1. 

Regression coefficients for A) the main effects of the circadian clock input parameters and B) the 

cross-terms and second order terms of the input parameters from the PLSR-based sensitivity 

analysis of the state variable CC in Cluster 1. The variables showing the largest effects on the state 

trajectory are marked with a star symbol. 
 

Figure S10 showed that the effects of vmB, vmC, vmP and k3 on CC indicated in the NPLSR 

analysis in the main manuscript were also manifested in the 2-way PLSR analysis of the input-

output relationships in Cluster 1. However, the positive main effect of k7 was not confirmed by the 

2-way PLSR. However, several interaction terms involving k7 seemed to have effects on CC, such as 

the interaction between vmP and k7. Since cross-terms between the input parameters were not 

included in the N-way PLSR analysis, confounding of these interaction effects with the main effect 

of k7 may explain the positive sensitivity to k7 indicated by the N-way PLSR.  
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Supplementary material 4. Results from the method 
benchmarking 
 
 
4.1 Results from inverse metamodelling using an unfolded state trajectory matrix 

The state variable trajectory array was unfolded into a 2-way matrix by concatenating all state 

trajectories. The resulting matrix was used as regressor in a 2-way HC-PLSR to predict the 

circadian clock parameters (analogous to the inverse N-way HC-PLSR metamodelling). The 

clustering results from the 2-way HC-PLSR using the unfolded state trajectory matrix as regressor 

are given in Figure S11. The global parameter prediction accuracies were comparable to those 

obtained with the global inverse N-way metamodelling, but in the hierarchical metamodelling, the 

same predictive ability (on average) could not be achieved using 2-way HC-PLSR (data not shown). 

This was probably caused by the low quality of the clustering of the observations. 

 

 

  
 
Figure S11. Clustering of the observations based on the unfolded state trajectory matrix. 

Plot of the X-scores (PC1-PC3) from the global inverse PLSR metamodelling using the unfolded 

state trajectory matrix as regressor and the parameters as response variables. The observations are 

coloured according to the cluster memberships used in the 2-way HC-PLSR. Cluster1=blue, 

cluster2=red, cluster3=yellow, cluster4=green, cluster5=magenta, cluster6=cyan. The clustering 

was done on the X-scores, using 12 PCs. 

 
 
4.2 Results from inverse metamodelling using aggregated outputs derived from the state 
trajectories 

From the state variable data, the following aggregated outputs were calculated: period of oscillation, 

time to convergence, bottom, peak, time to bottom and time to peak for each state variable 

trajectory. This resulted in 65 aggregated outputs (see Figure S12). The parameters of the 

mammalian circadian clock model were predicted from these aggregated outputs using (2-way) HC-

PLSR. This resembles the approach presented by Sarkar and Sobie [1], except they used 

conventional PLSR instead of HC-PLSR, and in [1] an inversion of the regression coefficient 

matrix derived by predicting phenotypes from parameters was used instead of calibrating a PLSR 

model directly using the parameters as responses like we did here. The clustering results from the 2-

way HC-PLSR using aggregated outputs to predict the circadian clock parameters are given in 

Figure S13. As when using the unfolded state trajectory matrix as regressor, the global parameter 

prediction accuracies were also here comparable to those obtained with the global inverse N-way 

metamodelling, but in the hierarchical metamodelling, the same predictive ability (on average) 

could not be achieved using 2-way HC-PLSR (data not shown).  
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Figure S12. Aggregated outputs derived from the mammalian circadian clock state 
trajectories. 
Illustration of the calculated aggregated outputs of one of the 16 circadian clock state variables, MB. 

ttb=time to bottom, ttp=time to peak. 

 
 

Figure S13. Clustering of the observations based on the aggregated outputs. 

Plot of the X-scores (PC1-PC3) from the global inverse PLSR metamodelling using the aggregated 

outputs as regressors and the parameters as response variables. The observations are coloured 

according to the cluster memberships used in the 2-way HC-PLSR. Cluster1=blue, cluster2=red, 

cluster3=yellow, cluster4=green, cluster5=magenta, cluster6=cyan. The clustering was done on the 

X-scores, using 12 PCs. 

 

 
4.3 Conclusions from method benchmarking 

As shown in Figure S11 and S13, the calibration set observations were not clustered into well-

defined distinctly separated clusters when the clustering was based on PLSR scores from a global 

PLSR model using the unfolded state trajectory matrix or the aggregated outputs as regressors to 

predict the circadian clock parameters. As shown in the main manuscript, the clustering based on 

the NPLSR factors derived from the 3-way state trajectory array resulted in considerably more well-

defined clusters. Hence, using the entire time series in NPLSR gave a more distinct and presumably 

more biologically relevant separation of the observations into clusters within which to carry out 

regional modelling, and was the most suitable method for exploration of the input-output mapping.  

The global parameter prediction accuracies from the 2-way metamodelling were comparable 

to those obtained with the global inverse N-way metamodelling. However, in the hierarchical 

metamodelling, neither the unfolded state trajectories nor the aggregated outputs could predict the 

parameters with as high accuracy (on average) using 2-way HC-PLSR as with the N-way HC-PLSR 
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due to a lower quality of the clustering. Hence, there is a clear gain of using multi-way 

methodology.  
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