NosA, a transcription factor important in Aspergillus fumigatus stress and developmental

response, rescues the germination defect of a *laeA* deletion

Alexandra A. Soukup^{a, *}, Mitra Farnoodian^{b, *}, Erwin Berthier^c, and Nancy P. Keller^{b, c, #}

Supplementary Information

Table S1: Primers used in this study

Primer Name	Sequence	Purpose
NosA 5` flank		A. fumigatus $\Delta nosA$ and
for	CGGCAAGGTCACGAGCAG	OE::nosA constructs
NosA 5` flank	CATTCCCGTCGTCATCCACCTCCGAGTCG	A. fumigatus
Rev pyrG	AGGTATCGATAGCTGG	<i>∆nosA</i> construct
Ap pyrG For	GAGTCGAGGTATCGATAGCTTG	<i>∆nosA</i> construct
Ap pyrG Rev	ATTCGACAATCGGAGAGGCTGC	<i>∆nos</i> Aconstruct
NosA 3` flank	TGTGTGTTTCCTTGCGTTGCAGCCTCTCC	A. fumigatus
for pyrG	GATTGTCGAATGA	<i>∆nosA</i> construct
NosA 3` flank		A. fumigatus
rev	CAGCTTTGAAACATGAACAGCA	<i>∆nosA</i> construct
NosA 5` flank	CATTCCCGTCGTCATCCACGCGTAATACG	A. fumigatus OE::nosA
rev pyrG&gpdA	ACTCACTATAGG	construct
pyrG 3` for		A. fumigatus OE::nosA
pJMP9	CGTAATACGACTCACTATAGGG	construct
		A. fumigatus OE::nosA
gpdA(p) 3`	TACCCCGCTTGAGCAGACATCACA	construct
NosA 3` for	CGGCCTCGAATGCCGCCAAGAGGGTCGT	A. fumigatus OE::nosA
gpdA	ACCCCGCTTGAGCAGACATCACA	construct
		A. fumigatus OE::nosA
NosA 3` int	CAAGACCACTGCGGGATTCG	construct
Af nosA 5' flank		A. fumigatus ∆nosA
ext	GCACAACACGATCCTGCTGAAC	mutant screening
		A. fumigatus ∆nosA
Ap pyrG 3' int	CTGGACCAAACACATCGATGC	mutant screening
		A. fumigatus OE::nosA
gpdA 5' int	GCGTCCAAATATCGTGCCTCTCC	mutant screening
		A. fumigatus OE::nosA
Af nosA 3' int 2	GAGGGTCATGCTGAAAGGTGG	mutant screening
Af nosA 5' flank	NNNGCGGCCGCCGGCAAGGTCACGAGCA	A. fumigatus
for NotI	G	complementation
Af nosA 3' flank	NNNGCGGCCGCGCTGTTCATGTTTCAAA	A. fumigatus
rev NotI	GCTG	complementation

An nosA 5' flank	NNNGCGGCCGCCGACGAACTCCCCGCAC	A. nidulans
An nosA 5 Tlank	NNNGUGGUUGUGIGAAAGAAAGGIAIIG	A. niaulans
rev Noti		
An nosA 5 Tlank		A. $niaulans \ \Delta nosA$
rev pyrG		
All nosa 5 mank	CCATCTCCTACA	A. Maulans ZhosA
101 pyrO	OUDATCICUTACA	
All nosA 5 Hallk	CGACGAACTCCCCCCACC	A. Maulans DhosA
An noc A 2' flonk		A midulang Anog A
All HOSA 5 Hallk	GTGAAAGAAAGGTATTGTCTGG	A. Mauluns AnosA
An nos A 5' flonk		A widulans Anos A DCD
All HOSA J Hallk	CTCCACCTCCACCACA	A. manual and probe
CAL		A midulans Anos A PCP
An n o A 3' int	GTTCTTCATACGTTCCTTCTCC	A. manual and probe
All $10SA \ 5'$ for		screening and probe
		A nidulans northorn
probe	CUICAUCACACICUUICIC	nrohe
an cneA 3' for		
an eper 5 101	CCACACCACCCTTCCTCC	A nidulans northern
probe	GCACACGAGGCGITCCTCG	nrohe
an hytA 5' for		
nrobe	CGTGTCACTGCAATTCAGTTC	A nidulans northern
prote		probe
an hxtA 3' for		
nrohe	ACGGGACCAGTCCGGTCC	A. nidulans northern
prote	Reddoneendreeddree	probe
hphF	CGCTCTAGAACTAGTGGATC	Southern probe
hphR	CACCGGCTGCACATGTCAA	Southern probe
af hxtA 5' for		
probe F	CAGCAGTATGAGCGGTGCG	A. fumigatus northern
1		probe
af hxtA 3' rev		
probe	CTCGCTGTGAGCAGCGACC	A. fumigatus northern
1		probe
af cat2 probe 5'	AGGAGCAGTCGTCGCAGCC	A. fumigatus northern
		probe
af cat2 probe 3'	GGTTCATTACCTTGTTCCACGC	A. fumigatus northern
		probe
		semi-quantitative RT-
af sod1 F	TCATTGCTGTCCTCCGTGGTG	PCR
		semi-quantitative RT-
af sod1 R 2	GCGCTCGGAGTCCTCAGG	PCR

		semi-quantitative RT-
af sod2 F 2	GGTAAGATGAACACCGCTTTG	PCR
af sod2 R	CTTCTCCACAGCCTTCCAGTTG	PCR
af sod3 F	CTACGATGCCCTCCAACCCTAC	semi-quantitative RT- PCR
af sod3 R 2	AAGAGGGAATGGTTGATGTGC	semi-quantitative RT- PCR
af sod4 F	ACAAGTTCGCCAAGGACATTATCG	semi-quantitative RT- PCR
af sod4 R 2	TGTGGGTGGCCATATCTACC	semi-quantitative RT- PCR
af arpA F 2	CCAAGACGCGATTACCCGC	semi-quantitative RT- PCR
af arpA R	TCTTCGTGCCATTCGTCTG	semi-quantitative RT- PCR
af catA F	CCGATGAAGGCAACTGGGAC	semi-quantitative RT- PCR
af catA R	GGTCAGACATGGCCCACATG	semi-quantitative RT- PCR
af cat1 F 2	CATCAACCAACCTCGCGTTC	semi-quantitative RT- PCR
af cat1 R 2	GGCTGAGACCAGACATCCTC	semi-quantitative RT- PCR
af cat2 F	GCACACGGCCGTCTCCAAC	semi-quantitative RT- PCR
af cat2 R 2	CCCACGAGATCTTGTTGCCG	semi-quantitative RT- PCR
af nosA F	GCAGACGAAGATGAATGAGCG	semi-quantitative RT- PCR
af nosA R	AAGTCTGTCGTTCTGTCTTGAC	semi-quantitative RT- PCR

Figure S1

Fig. S1. Southern digests confirm *A. nidulans* transformants. A. Confirmation of TAAS157.13 ($\Delta nosA$) using a PvuII digestion. Expected sizes are: RJMP103.5 - 3263 bp; TAAS157.13 – 2708 bp. Probe was created using An nosA 5' flank for and An nosA 5' flank rev pyrG to amplify template. B. Confirmation of transformants for complementation testing using NotI. Expected sizes are: RJMP103.5 – 24945 bp; TAAS150.11 (+*A.n. nosA*) – 4361 bp; TAAS149.4 (+*A.f. nosA*) – 4100 bp. Dual probes were created using An nosA 5' flank for and An nosA 3' flank rev and Af nosA 5' flank for and Af nosA 3' flank rev to amplify templates.

Fig. S2. Southern blot using HindIII + StuI or BgIII confirms correct *A. fumigatus* transformants. Predicted fragment sizes in bp for HindIII + StuI are WT: 2955 and 2366, $\Delta nosA$: 5494, *OE::nosA*: 4603, 2955, and 1366. Predicted fragment sizes in bp for BgIII are wild type: 5567, $\Delta nosA$: 5497, *OE::nosA*: 9097. Strains correspond to WT – TFYL20.10, $\Delta nosA$ - TAAS104, *OE::nosA* – TAAS105, $\Delta laeA$ – TFYL19.3, $\Delta laeA$ $\Delta nosA$ – TAAS107, $\Delta laeA$ *OE::nosA* – TAAS108. Probe was created using Af nosA 5' flank for and Af nosA 3' flank rev to amplify template.

Figure S3

Fig. S3. Northern blots confirm overexpression of *nosA* and deletion of *nosA* in both wild type and $\Delta laeA$ backgrounds of *A. fumigatus*. Note that $\Delta laeA$ also displays increased *nosA* transcript relative to wild type under these conditions, confirming the results of the previously published microarray (Perrin et al., 2007). Actin related protein A (*arpA*) was used as a loading control. Amounts given are of *nosA* transcript normalized to *arpA* levels, relative to wild type. Strains correspond to WT – TFYL20.10, $\Delta nosA$ – TAAS104, *OE::nosA* – TAAS105, $\Delta laeA$ – TFYL19.3, $\Delta laeA \Delta nosA$ – TAAS107, $\Delta laeA OE::nosA$ – TAAS108.

Figure S4.

Fig. S4. Southern digest confirming *A. fumigatus* complementation strains using EcoRI. Expected sizes are: TAAS104 – no fragment; TAAS155.3 (+ *A.f. nosA*) and TAAS156.5 (+ *A.n.* nosA) – 1426 bp. hphF and hphR were used to amplify template DNA for the probe.

Fig. S5. *A. fumigatus nosA* does not influence expression of *cat2* or *hxtA*. When carbon is absent from the culture, both *cat2* and *hxtA* transcript levels increase in all strains tested, regardless of *nosA* genotype. Strains correspond to WT – TFYL20.10, $\Delta nosA$ – TAAS104, *OE::nosA* – TAAS105, $\Delta nosA$ + *A.f. nosA* – TAAS155.3.

Fig. S6. Resistance to chemicals which generate reactive oxygen species. A. Overexpression of *nosA* results in increased resistance to 20 μ M menadione, as evidenced by an increased ratio of

treated/untreated colony diameter. This increase is independent of *laeA*, as increased resistance occurs in both wild type and $\Delta laeA$ backgrounds. $\Delta laeA$ also exhibits a statistical increase in menadione resistance relative to WT, which is not abrogated by deletion of *nosA*. No significant differences were seen for resistance to 4 mM hydrogen peroxide among *nosA* mutants in their respective control backgrounds (e.g. WT or $\Delta laeA$) although the double *nosA* $\Delta laeA$ mutants were more resistant to hydrogen peroxide than wild type and single *nosA* mutants. Letters represent significant differences at p < 0.05. B. Semi-quantitative RT-PCR examining catalase and superoxide dismutase transcript levels in *nosA* mutants. *OE::nosA* strains do not exhibit a significant increase in *sod2* transcript, but maintains wild type transcript levels of other genes. Actin related protein A (*arpA*) was used as a loading control. Strains correspond to WT – TFYL20.10, $\Delta nosA$ - TAAS104, *OE::nosA* – TAAS105, $\Delta laeA$ – TFYL19.3, $\Delta laeA$ $\Delta nosA$ – TAAS107, $\Delta laeA$ OE::nosA – TAAS108.

Fig. S7. NosA mutants show only minor differences in SM profiles. A. TLC analysis visualized under 254 nm light. 4 replicates of each strain are shown. B. TLC analysis visualized under 366 nm light. 4 replicates of each strain are shown. The band correlating to gliotoxin is indicated (G). Strains correspond to WT – TFYL20.10, $\Delta nosA$ – TAAS104, OE::nosA – TAAS105, $\Delta laeA$ – TFYL19.3, $\Delta laeA \Delta nosA$ – TAAS107, $\Delta laeA OE::nosA$ – TAAS108.

Figure S8

Fig. S8. NosA mutants do not differ in macrophage engulfment or survival. A. Engulfment of condia after a 1 hour incubation with purified human primary macrophages. B. Survival of engulfed conidia. 4 hours post-engulfment, the numbers of surviving conidia were quantified and normalized to engulfed conidia. No differences were seen between the strains for either engulfment or spore survival. Strains correspond to WT – TFYL20.10, $\Delta nosA$ – TAAS104, *OE::nosA* – TAAS105.