OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons

Richardson N Leão, Sanja Mikulovic, Katarina E Leão, Hermany Munguba, Henrik Gezelius, Anders Enjin, Kalicharan Patra, Anders Eriksson, Leslie M. Loew, Adriano BL Tort & Klas Kullander

Supplementary Figures 1-9

Supplementary Figure 1. Chrna2+ cells are a subpopulation of *som*+ neurons in the SO of CA1 and subiculum. (a) Tomato+ cell distribution in fluorescent photomicrographs of a coronal hippocampal section from a Chrna2-cre/ $R26^{tom}$ mouse (scale bar=200µm). (b) Example of *in situ* hybridization for *som* RNA. (c) Examples of coexpression of *som* RNA and the Tomato protein (evinced by immunohistochemistry, scale bar=50µm). (d) Another example of *som* and *chrna2* coexpression. *Inset*, Venn diagram showing the number of cells that exclusively expressed *som* (green; n=394), co-expressed *som* and *chrna2* (yellow; n=214) or only *chrna2* RNA (red; n=11).

Supplementary Figure 2. *Viaat* mRNA is selectively lost in OLM^{α 2} cells in Chrna2-cre/*Viaat*^x mice. Fluorescent photomicrographs of horizontal hippocampal sections of Chrna2-cre/*R26*^{*tom*} animals obtained by laser-scanning confocal microscopy. Chrna2-cre activity and *Viaat* mRNA expression in cell bodies were visualized by combined immunofluorescence for Red Fluorescent Protein (RFP, red) to detect tdTomato expressing cells and fluorescent *in situ* hybridization for *Viaat* (green). (a) All Chrna2-cre positive cells also expressed *Viaat* mRNA in sections from Chrna2-cre/*R26*^{*tom*} mice (n=103). Arrowheads indicate cells positive for both *Viaat* mRNA and Chrna2-cre activity. (b) The majority (>90%, n=145 out of 160) of Chrna2-cre positive cells in sections from Chrna2-cre stratum oriens, SP - stratum pyramidale, SR - stratum radiatum, SLM - stratum lacunosum moleculare. Scale bar=100µm.

Supplementary Figure 3. $OLM^{\alpha 2}$ cells inhibit distal apical dendrites of PCs. (a) Fluorescence changes of a PC apical dendrite filled with voltage sensitive dye (VSD) in response to a depolarizing current step at the PC soma. Recordings were made while a connected $OLM^{\alpha 2}$ cell was either silent (black traces, $OLM^{\alpha 2}$ OFF) or firing (red traces, $OLM^{\alpha 2}$ ON). The current clamp traces of the $OLM^{\alpha 2}$ neuron are shown in the bottom. The three sets of fluorescence traces were obtained from three locations of the PC dendrite (shown in red in the micrograph, scale bar=20µm): proximal (D1), intermediate (D2) and distal (D3). (b) Mean fluorescence change of the distal PC dendrite (D3) at the onset (period '1' in **a**) and at the end (period '2') of the somatic depolarization step with (bottom) and without (top) $OLM^{\alpha 2}$ cell firing (*p<0.05). $OLM^{\alpha 2}$ cell spikes were elicited 200ms after the onset of the depolarization step.

Supplementary Figure 4. Cre driven channelrhodopsin expression is similar in Chrna2cre/ChR2 and Chrna2-cre/viaat^{/x}/ChR2 animals. (a) Photomicrograph of a hippocampal section of a Chrna2-cre (left; Tomato reporter) and a Chrna2-cre/Viaat^{/x} mouse (right; no reporter) transduced with the light-sensitive channel hChR2 (fused with YFP). Scale bar=200µm. (b,c) Expression of YFP in Tomato+ cells in hChR2-YFP-transduced Chrna2-cre/ $R26^{tom}$ (b) and Chrna2-cre/ $Viaat^{lx}$ animals (c). Scale bar=20µm. (d) Whole cell responses of hChR2 expressing OLM^{α 2} cells in hippocampal slices from Chrna2-cre/ $R26^{tom}$ and Chrna2-cre/ $R26^{tom}$ /Viaat^{lx} mice in response to 2.5mW and 3.5mW laser pulse. (e) Total laser power vs. number of APs in response to a 400ms laser pulse in OLM^{ChR2} cells in Chrna2-cre (black trace) and Chrna2-cre/ $Viaat^{lx}$ (red trace). (f) Top, cell-attached recordings showing firing adaptation of OLM^{ChR2} cells in Chrna2-cre mice during a 5-min 1.4mW laser pulse. Bottom, boxplot summarizing the firing frequency of OLM^{ChR2} neurons at rest, and during the 1st and 5th minute following the onset of the laser pulse (*p<0.05).

Supplementary Figure 5. OLM cell stimulation inhibits TA excitatory responses at SLM. Fluorescence changes at SLM following TA stimulation in control with or without application of a 1.4mW laser light pulse (left). Excitation of OLM^{ChR2} cells with light produced a large inhibition at SLM measured as the area under the curve of the fluorescence signal change in response to TA stimulation (right). *p<0.05.

Supplementary Figure 6. Light activation of $OLM^{\alpha 2}$ cells suppresses LTP in the TA pathway. Left, potentiation of TA-PC synapses in Chrna2-cre/ChR2 mice during control conditions (no light; open circles) or upon blue light stimulation (black squares). Right, as before but for Chrna2-cre/Viaat^{/x}/ChR2 mice. Top traces show fEPSPs before, 10 and 30 min after wTBS.

Supplementary Figure 7. Light activation of $OLM^{\alpha 2}$ cells induces LTP in the SC pathway (a) Left, potentiation of SC-CA1 synapses in Chrna2-cre/ChR2 mice during control conditions (no light; open circles) or upon blue light stimulation (black squares). Right, as before but for Chrna2cre/*Viaat*^{*lx*}/ChR2 mice. Top traces show fEPSPs before, 10 and 30 min after wTBS. (b) Left, potentiation of SC-CA1 synapses in Chrna2-cre mice without (open circles, control) and with application of 1µM nicotine (black squares). *Right*, As before but for Chrna2-cre/*Viaat*^{*lx*} mice. (c) Current clamp recordings showing membrane potential changes in OLM^{$\alpha 2$} cells following a single SC stimulation in control conditions or in the presence of light or nicotine. (d) Mean number of APs triggered in OLM^{$\alpha 2$} cells by a single SC stimulation in control conditions and in response to the application. (e) Cell attached recordings of OLM^{$\alpha 2$} neurons in control conditions and in response to the application of 1µM nicotine (example recordings during the 1st and the 5th minute of nicotine application). (f) Summary of firing frequency of OLM^{$\alpha 2$} neurons in control conditions, 1st and 5th minute after nicotine application (* denotes *p*<0.01).

Supplementary Figure 8. OLM^{α 2} cells are electrically connected. (a) Presynaptic depolarizing voltage steps (-20 to +60mV, -60mV holding) resulted in pre- and postsynaptic outward currents in a CA1 OLM^{α 2} cell pair (photomicrograph on the top, scale bar=20µm). (b) Mean junction potential vs. postsynaptic current relationships (bidirectional; 1→2, 2→1) of four electrically connected CA1 OLM^{α 2} cell pairs.

Supplementary Figure 9. Schematic representation of the CA1 OLM cell microcircuit. Red

arrows represent the potentiation effect from $OLM^{\alpha 2}$ cell (red) activation on SC-CA1 and TA-CA1 synapses. Cholinergic inputs from the fimbria fornix (FF) are represented in green. Other interneurons represented here are basket cells in SP, SC-associated interneurons in SR and BS neurons in SO (SLM, *s. lacunosum-moleculare*; SR, *s. radiatum*; SP, *s. pyramidale*; SO, *s. oriens*; TA, temporoammonic pathway; SC, Schaffer collateral pathway).