Supplemental Materials. Supplemental Figures and Tables

Supplemental Table S1. Identification of BICD2-N binding subunits of dynein and dynactin by mass spectrometry. All proteins identified with a significant score and not present in the background controls are listed.

Score	NCBI GI number	Description	Da	Coverage (%)	Unique Peptides
3890	gi 149642611	dynactin 1 (p150Glued)	137458	45.2	41
1478	gi 5031569	ARP1	42701	54.5	16
1185	gi 77736063	dynactin 2 (p50)	44495	35.7	14
1177	gi 119914141	cytoplasmic dynein heavy chain	548197	5.8	19
933	gi 28603770	capping protein beta	34176	27.6	12
822	gi 61316470	capping protein alpha 2	33073	55.6	9
712	gi 73953656	dynactin p62	54023	29.3	9
262	gi 115497348	cytoplasmic dynein intermediate chain 2	68734	9.5	3
178	gi 119892302	kinesin family member 21A	187179	1.5	2
151	gi 115497064	dynactin 3 (p22)	21292	15.1	3
130	gi 115497256	dynactin 6 (p27)	21061	14.2	2
68	gi 164420721	dynactin 5 (p24)	20698	8.2	2
63	gi 76640631	dynein light intermediate chain 2	54392	2.4	1

A. Mass spectrometry analysis of purified bovine dynactin

B. Mass spectrometry analysis of purified bovine dynein

Score	NCBI GI number	Description	Da	Coverage (%)	Unique Peptides
16600	gi 119914141	cytoplasmic dynein heavy chain	548197	50.5	199
1593	gi 114051407	cytoplasmic dynein light intermediate chain 1	56800	49.6	22
956	gi 76640631	cytoplasmic dynein light intermediate chain 2	54392	32.3	14
840	gi 11276091	cytoplasmic dynein intermediate chain 1	73222	22.7	10
732	gi 74004544	cytoplasmic dynein intermediate chain 2	69215	27.7	9
321	gi 18777767	cytoplasmic dynein light chain roadblock type 1	10983	74.0	4
108	gi 5730085	cytoplasmic dynein, light chain Tctex	12672	14.2	1
75	gi 157074188	ARP1	42382	2.7	1
47	gi 77736063	dynactin 2 (p50)	44495	2.2	1

C. Mass spectrometry analysis of Bio-GFP-BICD2-N-dynein-dynactin complex after cross-linking with low doses of Bis[sulfosuccinimidyl] glutarate and isolated by pull-down with streptavidin beads in denaturing conditions

Score	NCBI GI number	Description	Da	Coverage (%)	Unique Peptides
8026	gi 119914141	Cytoplasmic dynein heavy chain	548197	29.3	124
718	gi 149642611	Dynactin 1 (p150Glued)	137458	8.4	9
513	gi 18139547	BICD2	93562	8.9	7
366	gi 114051407	Cytoplasmic dynein light intermediate chain 1	56800	12.6	7
365	gi 76640631	Cytoplasmic dynein light intermediate chain 2	54392	15.2	6

7.5 % gel

12.5 % gel

Supplemental Figure S1. Mapping of the minimal dynein-interacting domain of BICD2 and characterization of the purified protein complexes.

(A,B) Mapping of the minimal dynein-interacting domain of BICD2 using peroxisome/mitochondria relocalization assay. In this assay, BICD2-N fragments are targeted to the cytosolic side of the peroxisomes and mitochondria using the *Listeria monocytogenes* ActA-derived membrane-targeting sequence (MTS) and the distribution of the organelles is assessed by immunofluorescent staining (Hoogenraad *et al.*, 2003). When dynein motors are recruited to the organelles, these organelles form a tight pericentrosomal cluster. (A) A scheme of BICD2 fragments used and a summary of their effect on peroxisome localization when fused to MTS. The shortest construct, which potently relocalized is indicated by a box. (B) A scheme of GFP-BICD2-N-MTS constructs and representative images showing HeLa cells transfected with different BICD2-N-MTS fusions and stained for the peroxisome marker PEX1. Peroxisomes are relocated to the pericentrosomal region by the GFP-BICD2-N-MTS fusion containing amino acids 25-400 of BICD2, but not by the fusion containing amino acids 1-262.

(C,D) Coomassie-stained gels of dynein (7.5% acrylamide) (C) and dynactin (12.5% acrylamide) (D) complexes are shown with individual subunits identified.

(E) Coomassie-stained gel showing BICD2-N purified from HEK293 cells.

Supplemental Figure S2. Overexpression of p50/dynamitin removes Arp1 but not dynein or p150Glued from the mitochondrial cluster induced by BICD2-N expression.

(A) A scheme of GFP-BICD2-N-MTS construct.

(**B-F**) HeLa cells were transfected either with GFP-BICD2-N-MTS alone (**B,C**) or together with HA-p50/dynamitin (**D-F**), fixed with cold methanol (for dynein staining), with cold methanol followed by 4% paraformaldehyde (for dynactin subunits) or with 4% paraformaldehyde in culturing medium (to visualize mitochondria). Cells were stained with the indicated antibodies against dynein or dynactin subunits, HA tag, or MitoTracker Red CMXRos.

Supplemental Figure S3. BICD2-N displaces dynein but not dynactin from MT tips. (A) HeLa cells stably expressing DIC2-GFP (green) were transfected with mCherry-BICD2-N and stained for endogenous EB1, a marker of growing MT plus ends (red). Insets show enlargements of the boxed areas indicated by numbers. Note that DIC2-GFP is diffuse in mCherry-BICD2-N expressing cell but is present at the EB1-positive MT plus ends in surrounding cells.

(B) HeLa cells were transfected with GFP-BICD2-N and stained for endogenous $p150^{Glued}$ (green) and EB3 (red). EB3 is an EB1 family member, which similar to EB1 marks growing MT plus ends. Insets show enlargements of the boxed areas. $p150^{Glued}$ is still detectable at the EB3-positive MT tips in the GFP-BICD2-N-expressing cell.

Supplemental Figure S4. Characterization of DHC, p150^{Glued} and LIS1 siRNAs. HeLa cells were transfected with the indicated siRNAs and Western blots were performed with the indicated antibodies 3 days after transfection.

Supplemental Figure S5. Rab6A vesicle movement velocities in the absence of BICD2-N and after BICD2-N recruitment.

Distributions of movement velocities to MT plus and minus ends in MRC5-SV cells expressing FKBP2-GFP-Rab6A alone or together with HA-BICD2-N-FRB, after rapalog addition.