Appendix S2: Shogun Implementation and Algorithm

To describe the with-bias algorithm, we start from the 2-class v-formulation as stated in Eq. (28) in [1]
and repeated here
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We first notice that the two equality constraints can be expressed by class-wise total weight mass condi-
tions: a’lTl =a’ lTl = /2. Due to these equality constraints, reasonable subproblems require y; = y;;
otherwise, neither o} nor a; could be changed. Consequently this constraint is implemented by the se-
lection strategy and a proper choice of the initial solution candiate. Note that feasible initial points also
require v < C'- Ny /N. To recover the problem in Eq. (15) in the main manuscript, we need to perform
a variable transformation o' — v combined with the choice v = C /(p- N).

For 2-class problems, LIBSVM’s working set selection strategy for v-SVMs (cf. WSS 5 in [1]) traverses
the active set twice and thus requires an effort of O(2N + 2T), where T is the time to compute a kernel
row. A straightforward generalization traverses the active set for each of the C' classes leading to an effort
of O(CN + CT) which is what we used throughout experiments. However, when ordering examples, such
that y; < y; for ¢ < j and by creating C' arrays to hold the maximum class-wise gradient etc. the
computational complexity can be further reduced to O(C + N + CT).

We now describe our without-bias algorithm. We now face the problem that due to the lack of a bias
there is no sum-to-one constraint on the «;’s anymore in the dual optimization problem, Eq. (15) in the
main manuscript. Therefore the line search performed by SMO cannot be solved analytically anymore.
As a remedy we implemented a without-bias solver based on SVMlight, which basically can deal with
any quadratic programm. The algorithm is described in Algorithm 1. We thereby employ the notation
IC = Kk(xi,x;);'j—; for the block kernel matrix as defined in Eq. (7) in the main manuscript.

The algorithm has as input an accuracy parameter € (in our experiments € = 0.001 was chosen) and
an active set size @ (@ = 40 was chosen). The main FOR loop (Lines 2-3) iterates until the stopping
criterion (duality gap less than €) is fulfilled. Line (a) computes the set of @) active variables based on
minimal gradients. Line (b) performs the actual Scatter SVM computation w.r.t. the active variables,
resulting in new values of the a;. Line (¢) updates the gradient w.r.t. the the new «;. Line (d) computes
the actual objective value of the optimization problem, Eq. (15) in the main manuscript.

Algorithm 1
1. SO = —0Q, gi = 07 Qg = 07 Vi = 1""’”

2. for t = 1,2,... and while optimality conditions are not satisfied, i.e. |1 — S‘?—jl| >€
(a) Select Q variables a;,,...,a;, based on the gradient g of Eq. (15) in the main manuscript,
w.r.t. «

(b) Store a®? = a and then update a according to Eq. (15) in the main manuscript, with respect

to the selected variables
(¢) Update gradient g; + g; + Zqul(aiq — oYy Kk(xi,,%;), Yi=1,...,n

tq

(d) Compute the SVM objective S* = 3. y;c; — 3 3, Yigm,ic;

3. end for
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