Electronic Supplementary Information

New fluorescent pH optrodes based on covalently linkable PET rhodamines.

Daniel Aigner^a, Sergey M. Borisov^{a,*}, Francisco J. Orriach Fernández^b, Jorge F. Fernández Sánchez^b, Robert Saf^c and Ingo Klimant^a

^aInstitute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria

^bEnvironmental, Biochemical and Foodstuffs Analytical Control Research Group, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada, Spain

^cInstitute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria

*Corresponding author. Tel.: +4331687332516; Fax.: +4331687332502; E-Mail.: sergey.borisov@tugraz.at

Figure S1: Absorption spectra (left) and fluorescence spectra (right) of **2** in aqueous buffer solution (ionic strength 100mM) at different pH. Dye concentration was 2μ M when recording absorption and 0.05μ M when recording fluorescence spectra.

Figure S2: Absorption spectra (left) and fluorescence spectra (right) of **3** in aqueous buffer solution (ionic strength 100mM) at different pH. Dye concentration was $2\mu M$ when recording absorption and $0.05\mu M$ when recording fluorescence spectra.

Figure S3: Reversibility and repeatability of the sensor based on silica gel beads in D4[®] hydrogel. Signal drift and irreversible response are only observed at high pH values (>8) which are essentially outside the sensitive range.

Figure S4: Reversibility and repeatability of the sensor based on cross-linked poly(HEMA) beads linear poly(HEMA). They are good over the whole investigated pH range (pH 3-10).

Calibration

The following sigmoidal function was used for sensor calibration:

$$I = \frac{A_{\min} - A_{\max}}{1 + e^{(pH - pK_a)/dx}} + A_{\max}, \qquad (\text{Equation 1})$$

where I - fluorescence intensity, A_{max} , A_{min} , pK_a and dx are numerical coefficients.

NMR spectra

Compound 1

Figure S5: ¹H-NMR spectrum of **1** in CD₃OD containing 0.1% HOAc and 0.1% CF₃COOH. Before addition of HOAc the integral of acetate hydrogen (1.99ppm) was 2.9 (spectrum not shown here). $\delta = 7.65$ ppm (2H, d, Ar-H(positions 1,8), J_{ArH12,78} = 9.6 Hz); $\delta = 7.46$ (2H, dd, Ar-H(2,7), J_{ArH24,57} = 2.5 Hz); $\delta = 7.42$ (2H, d, Ar-H(4,5)); $\delta = 4.13$ (8H, t, ArNCH₂, J = 5.2 Hz); $\delta = 3.48$ (8H, t, HNC<u>H₂</u>); $\delta = 1.99$ (3H, s, H_{acetate}).

<u>Figure S6: ¹⁹F-NMR spectrum of 1. δ = -139ppm (2F, d, J = 20 Hz); δ = -150 (1F, t, J = 21 Hz); δ = -160 (2F, dt, J₁ = 6 Hz, J₂ = 21 Hz).</u>

Compound 2

Figure S7: ¹H-NMR spectrum of **2** in D₂O containing 0.1% CF₃COOH. δ = 7.55ppm (2H, d, Ar-H(positions 1,8), J_{ArH12,78} = 9.6 Hz); δ = 7.32 (2H, dd, Ar-H(2,7), J_{ArH24,57} = 2.3 Hz); δ = 7.26 (2H, d, Ar-H(4,5)); δ = 4.06 (8H, t, ArNCH₂, J = 4.9 Hz); δ = 3.48 (8H, t, HNC<u>H₂</u>); δ = 3.32 (2H, t, ArSCH₂, J = 6.7 Hz); δ = 2.76 (2H, t, C<u>H</u>₂COOH); δ = 2.06 (4.7H, s, H_{acetate}).

<u>Figure S8: ¹⁹F-NMR spectrum of 2. δ = -132ppm (2F, q, J = 11 Hz); δ = -139 (2F, q, J = 11 Hz).</u>

Compound **3**

Compound **3** could be identified as the pure 4'-carboxy regioisomer (figure S9). For comparison, the spectrum of the 5'-carboxy regioisomer (figure S10), which was also obtained upon HPLC purification of crude **3**, is shown. Resonance at >7.9ppm is can be attributed to the protons in the dicarboxyphenyl ring which are in ortho-position to a carboxy group. The 4'-isomer contains only two such protons, while three can be found for the 5'- isomer.

Figure S9: ¹H-NMR spectrum of **3** (4'-carboxy regioisomer) in D₂O. δ = 8.32ppm (1H, s, Ar-H(position 3')); δ = 8.00 (1H, d, Ar-H(5'), J_{ArH5'6'} = 7.5 Hz); δ = 7.27 (3H, d, Ar-H(6',1,8), J_{ArH12,78} = 9.3 Hz); δ = 7.06 (2H, d, Ar-H(2,7)); δ = 6.97 (2H, s, Ar-H(4,5)); δ = 3.85 (8H, broad s, ArNCH₂); δ = 3.35 (8H, broad s, HNCH₂); δ = 1.90 (3H, s, H_{acetate}).

Figure S10: ¹H-NMR spectrum of the 5'-carboxy regioisomer to **3** in D₂O. δ = 8.20 (1H, dd, Ar-H(4'), J_{ArH3'4'} = 8.1Hz, J_{ArH4'6'} = 1.7 Hz); δ = 7.99 (1H, d, Ar-H(3')); δ = 7.97 (1H, d, Ar-H(6')); δ = 7.35 (2H, dd, Ar-H(1,8), J_{ArH12,78} = 9.4 Hz, J_{ArH24,57} = 1.6 Hz); δ = 7.11 (2H, d, Ar-H(2,7)); δ = 7.08 (2H, d, Ar-H(4,5)); δ = 3.93 (8H, t, ArNCH₂, J = 4.6 Hz); δ = 3.42 (8H, t, HNC<u>H₂</u>); δ = 2.80 (5.3H, s, H_{acetate}).

LC-MS measurements:

Figure S11: Chromatogram of **1** after HPLC purification, recorded with an UV/VIS detector set to 250nm (top) and 540nm (bottom), bandwidth 4nm each.

Figure S12: Total ion current chromatogram of **1** after HPLC purification, recorded with an ESI-quadruple MS detector.

Compound 1 (crude)

LC-MS characterisation of crude 1 reveals an interesting side-product which shows a slightly higher mass than the main product but no absorption typical for rhodamines. This could be the product of a reduction (formal addition of H^- to the chinoid form of the rhodamine) which results in disruption of the xanthene chromophore.

Figure S13: Chromatogram of crude **1**, recorded with an UV/VIS detector set to 250nm (top) and 540nm (bottom), bandwidth 4nm each.

Figure S14: Total ion current chromatogram of crude 1, recorded with an ESI-quadruple MS detector.

Compound 2 after HPLC purification

Figure S15: Chromatogram of **2** after HPLC purification, recorded with an UV/VIS detector set to 250nm (top) and 540nm (bottom), bandwidth 4nm each. m/z=601 was found over the whole indicated time (ESI-quadruple MS detector).

Compound 3 after HPLC purification

Figure S16: Chromatogram of **3** after HPLC purification, recorded with an UV/VIS detector set to 250nm (top) and 540nm (bottom), bandwidth 4nm each.

Figure S17: Total ion current chromatogram of **3** after HPLC purification, recorded with an ESI-quadruple MS detector.

Compound 3 (crude)

LC-MS characterisation shows that crude **3** is composed of four different rhodamines which have been formed in an approximate ratio of 1:1:0.3:0.3. The two main components which are eluted earlier have been isolated and identified by NMR spectroscopy as the 5'-carboxy and the 4'-carboxy regioisomers of the target structure. The 4'-isomer (i.e. compound **3**) was used for characterisation. The two components eluted later have higher molecular masses and could be the result of methylation by methanesulfonic acid upon preparation.

Figure S18: Chromatogram of crude **3**, recorded with an UV/VIS detector set to 250nm (top) and 540nm (bottom), bandwidth 4nm each. The corresponding peak integrals are listed in the peak tables.

Figure S19: Total ion current chromatogram of crude **3**, recorded with an ESI-quadruple MS detector.

Gradients used for HPLC purification:

Time/min	Ratio MeOH/%	Ratio 0.1% aqueous HOAc/%	Flow rate/ml·min ⁻¹			
0	0	100	4			
10	30	70	4			
11	100	0	4			
16	100	0	4			
17	0	100	4			
22	0	100	4			

Table S1: HPLC gradient used for the purification of 1

Table S2: HPLC gradient used for the purification of **2**.

Time/min	Ratio MeOH/%	Ratio 0.1% aqueous HOAc/%	Flow rate/ml·min ⁻¹
0	10	90	16
30	25	75	16
32	100	0	16
40	100	0	16

Table S3: HPLC gradient used for the purification of **3**.

Time/min	Ratio MeOH/%	Ratio 0.1% aqueous HOAc/%	Flow rate/ml·min ⁻¹
0	0	100	4
12	30	70	4
12.5	100	0	4
16.5	100	0	4
17	0	100	4
21	0	100	4

Gradient used for LC-MS characterisation

Time/min	Ratio MeOH/%	Ratio 0.01% aqueous HCOOH/%	Flow rate/ml·min ⁻¹
0	2	98	0.7
5	2	98	0.7
10	100	0	0.7
12	100	0	0.7
13	2	98	0.7

Table S4: Gradient used for LC-MS characterisation of 1-3.