## Online supplemental material

## Three mutations in *Escherichia coli* that generate transformable functional flagella

Wenjing Wang<sup>a,\*</sup>, Zhengzeng Jiang<sup>a</sup>, Martin Westermann<sup>b</sup>, Liyan Ping<sup>a,#</sup>

<sup>a</sup> Department of Bioorganic Chemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knoell-Str. 8, D-07745, Jena, Germany

<sup>b</sup> Center for electron microscopy, University Hospital, Friedrich Schiller University Jena, Ziegelmuehlenweg 1, D-07743 Jena, Germany

## Corresponding author:

Liyan Ping

Department of Bioorganic Chemistry, Max-Planck-Institute for Chemical Ecology, Hans-Knoell-Str. 8, D-07745, Jena, Germany

Tel: + 49 3641 57 1214

Fax: +49 3641 57 1202

Email: <a href="mailto:lping@ice.mpg.de">lping@ice.mpg.de</a>

Running title: Transformable functional flagella in  $E.\ coli$ 

<sup>\*</sup> Current address: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

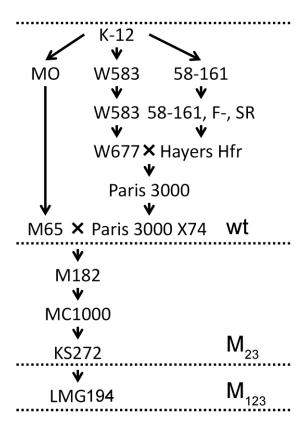



Figure S1. Pedigree of some ancestral strains of LMG194 and their *fli*C alleles.

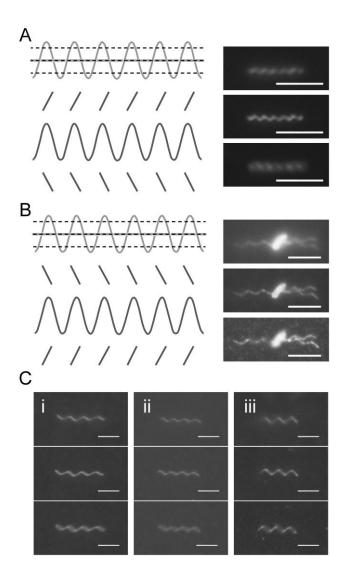
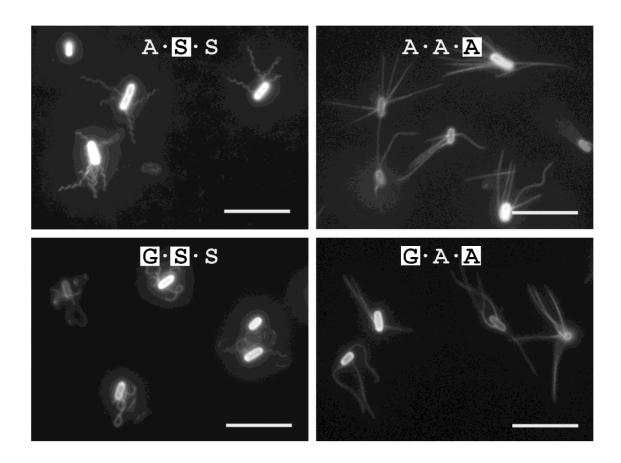
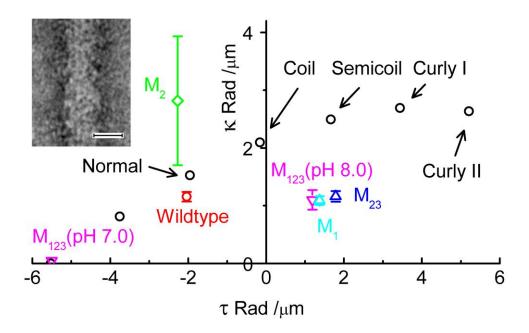





Figure S2. Determination of the helical handedness of flagella. scale bars equal 5  $\mu$ m. A, The left-handed L-curly flagellum. On the left is a diagram showing the three focal planes and the expected images for a left-handed helix. The real images of a detached  $M_2$  flagellum are on the right. B, The right-handed w-coil flagella on an immobilized cell. Left, a diagram showing the focal planes and the expected images. Right, the images of a  $M_1$  cell. C, Three kinds of right-handed flagella in this study: i, The w-coil helix from the  $M_1$  mutant. ii, The R-normal helix from the  $M_{23}$  mutant. iii, The w-coil form the  $M_{123}$  mutant at pH 12.0.



**Figure S3.** Flagella on the non-motile  $E.\ coli$  strains created in this study. Scale bar equals 10  $\mu$ m. The amino acid sequences in flagellin were shown in each panel: white letter, wild type; black letter in white background, mutation.



**Figure S4.** Plot of curvature ( $\kappa$ ) against twist ( $\tau$ ) for the major helical forms produced by different mutants. Black open circles are the theoretical values for canonical helices predicted by Calladine's bi-stable model. Both the straight helix of  $M_{123}$  flagella (pH 7.0) and w-coil helix (pH 8.0) were plotted. Inset is a TEM image of a piece of the straight  $M_{123}$  flagellum at pH 7.0 showing the subunit configuration. Scale bar equals 10 nm.

**TABLE S1.** Primers used in this study. Mutations are bold and underlined. Restriction sites are italic and underlined.

| Name   | Sequences 5'-3'                                                  | Note                                                                                                          |
|--------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Flic1f | ATGGCACAAGTCATTAATAC                                             | Forward primer for sequencing the entire <i>fli</i> C gene                                                    |
| Flic2r | TTAACCCTGCAGCAGAGAC                                              | Reverse primer for sequencing the entire fliC gene                                                            |
| Flid01 | TGGCGGTCTGGAAAGTCGTC                                             | Forward primer to create plasmids pM1, pM2, pM12, pM13, and pM23                                              |
| Flic4r | CGATTAACCCTGCAGCAGAGAC                                           | Reverse primer to clone the expression cassette of <i>fliC</i> from LMG194 and AW405                          |
| Flic5r | TTATCCGTTTCTGCAGGGTTTTTA                                         | Reverse primer to create plasmids pM1, pM2, pM12, pM13, and pM23                                              |
| Mut01r | CTGACCC <u>C</u> CTGCGTCATCC                                     | Reverse primer paring with Flid01 to introduce the mutation at 137 bp in the first-round PCR                  |
| Mut01f | GGATGACGCAG <u>G</u> GGGTCAG                                     | Forward primer paring with Flic5r to introduce the mutation at 137 bp in the first-round PCR                  |
| Mut02r | GAAACGGTTAGCAATCG <u>A</u> CTGACC                                | Reverse primer paring with Flid01 to introduce the mutation at 145 bp in the first-round PCR                  |
| Mut02f | GGTCAG <u>T</u> CGATTGCTAACCGTTTC                                | Forward primer paring with Flic5r to introduce the mutation at 145 bp in the first-round PCR                  |
| E3flid | TTAAATCCAGACCTGACCCGACTC                                         | Forward primer to create plasmid pM3                                                                          |
| Flic2r | TTAACCCTGCAGCAGAGAC                                              | Reverse primer to create plasmid pM3                                                                          |
| Mut03r | CCTGGATAG <u>C</u> AGACAGATCAGACTCAG                             | Reverse primer paring with E3flid to introduce the mutation at 331 bp in the first-round PCR                  |
| Mut03f | ${\tt CTGAGTCTGATCTGTCT}{\underline{\textbf{G}}{\tt CTATCCAGG}}$ | Forward primer paring with Flic2r to introduce the mutation at 331 bp in the first-round PCR                  |
| Kanf   | TATAAGGGATTTTGCCGATTTC                                           | Forward primer for amplifying the Kanamycin resistant gene cassette                                           |
| Kanr   | ATAAGGGCGACACGGAAATG                                             | Forward primer for amplifying the Kanamycin resistant gene cassette                                           |
| Cf1    | TACTTGCCATGCGATTTCCTTTTA                                         | Forward primer for amplifying a fragment containing the upstream sequence and first part of <i>fliC</i> gene  |
| Cr1    | ACCCGCTGCGTCATCCT                                                | Reverse primer for amplifying a fragment containing the upstream sequence and first part of <i>fli</i> C gene |
| KpnCf1 | AATT <i>GGTACC</i> TACTTGCCATGCGATTTCCTTTTA                      | Primer for introducing the <i>Kpn</i> I restriction site into the PCR product of primers Cf1 and Cr1          |
| SpeCr1 | AATT <u>ACTAGT</u> ACCCGCTGCGTCATCCT                             | Primer for introducing the <i>Spe</i> I restriction site into the PCR product of primers Cf1 and Cr1          |
| Cf2    | CGGATGTGAATGAAACTACTGGTG                                         | Forward primer for amplifying a fragment within the <i>fliC</i> gene close to the 3' end                      |
| Cr2    | CGCTTTCGACATATTGGACACTTC                                         | Forward primer for amplifying a fragment within the <i>fliC</i> gene close to the 3' end                      |
| XhoCf2 | AACA <u>CTCGAG</u> CGGATGTGAATGAAACTACTGGTG                      | Primer for introducing the <i>Xho</i> I restriction site into the PCR product of primers Cf2 and Cr2          |
| XbaCr2 | AATT <u>TCTAGA</u> CGCTTTCGACATATTGGACACTTC                      | Primer for introducing the <i>Xba</i> I restriction site into the PCR product of primers Cf2 and Cr2          |