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MRM Mass Spectrometry. We designed optimized MRM transitions for 3 signature peptides (3 

transitions/peptide) for each of the CYCLIN L1, T1, K1 and K2 and CDK12, CDK9 and CDK11 

based on our MS/MS data (Supplemental Table S2).  Peak areas are proportional to peptide 

amounts. MRM data were processed using MultiQuant v.1.0 (Applied Biosystems). Default 

values for noise percentage and minimum peak height were used (40% and 50 CPS, 

respectively). Manual inspection ensured that correct peaks were integrated for all samples. 

Integrated peak area values for multiple transitions were summed (Microsoft Excel). 

Quantitative PCR. Cells were lysed in Trizol (Invitrogen) and total RNA was prepared.  The 

samples were then treated with amplification grade DNAse I (Invitrogen). cDNA was generated 

by reverse transcription (RT) with SuperScript III Reverse Transcriptase (Invitrogen) 

Quantitative real-time RT-PCR was done as described previously and the relative expression 

changes were determined with the 2-CT method with GAPDH used as a normalization control 

(2, 4). The primer sequences used are: CDK12:5’-GAAGAGAGTCGCCCTTACACAAAC-3’, 

5’-AATACATCCACAGCTCCAAACATC-3’, CYCLIN K: 5’-CACCCAGGTTGTTTCTCC-3’, 

5’-CCTCACCTAAGGCAGCAG-3’, GAPDH: 5’-AGAAGGCTGGGGCTCATTTG-3’, 5’-

AGGGGCCATCCACAGTCTTC-‘3. 
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To estimate the relative level of CDK or cyclin partners for a given cyclin or CDK we 

isolated ectopic and endogenous CDK12 and CDK9 complexes by immunoprecipitation. The 

protein complexes resolved by SDS-PAGE and each lane was cut into multiple slices 

corresponding to specific molecular weight ranges. The peptides within each gel slice were then 

analyzed by MRM. The reason behind this method of analysis is that we could not rule out the 

possibility that CYCLIN K2 (43 KDa) may be expressed in HEK239A cells because this cell line 

was not among the 570 RNA-seq libraries examined for CYCLIN K splice variants. The 

separation of the immunoprecipitated protein complexes by SDS-PAGE allows CYCLIN K1 (64 

KDa) to be distinguished from CYCLIN K2 (43 KDa). The MRM analysis of CDK12 

immunoprecipitates showed that CDK12 interacted primarily with CYCLIN K, with CYCLIN 

K1 specific and CYCLIN K1/K2 common peptide signatures found predominantly in the 65-100 

KDa gel slices (Supplemental Fig. S1A). We did not detect any CYCLIN K2 specific peptide 

signatures in any of our CDK12 immunoprecipitates or significant levels of any CYCLINK 

peptides in the 40-53 KDa ranges (Supplemental Fig.S1A).  This supports our observation that 

CYCLIN K1 is the predominant CYCLIN K isoform that interacts with CDK12. We were able to 

detect one peptide of CYCLIN L1 in both endogenous and ectopic CDK12 immunoprecipitates.  

However, the signal from this CYCLIN L1 peptide was ~15 fold lower and ~6 fold lower than 

the signal for CYCLIN K in the endogenous and ectopic expressed CDK12 immunoprecipitates, 

respectively. This suggests that CYCLIN L1 is a very minor cyclin partner of CDK12 at 

endogenous protein levels. 
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 MRM analysis of endogenous and ectopic CDK9 complexes shows that CYCLIN T1 was 

the primary cyclin interacting with CDK9 in HEK293A (Supplemental Fig. S1B). Low levels of 

CYCLIN K1 and K1/K2 peptide signatures were observed in 3xFLAG-CDK9 

immunoprecipitates in the 60-90 KDa gel slices suggesting that CYCLIN K1 may be a minor 

partner of CDK9 when CDK9 is ectopically expressed (Supplemental Fig. S1B). Again, no 

CYCLIN K2 peptide signatures were observed. The finding that the common CYCLIN K1/K2 

MRM peptide signatures are predominantly found in molecular weight ranges consistent with the 

molecular weight of CYCLIN K1 is further evidence that CYCLIN K1 is the predominant 

isoform expressed in mammalian cells. 

 Studies have shown that cyclins can interact with multiple CDK partners (1, 3, 5, 7). 

Therefore, we analyzed 3xFLAG tagged CYCLIN L1, T1 and K1 immunoprecipitates to look for 

CDK12, CDK11 and CDK9 by MRM. In 3xFLAG-CYCLIN L1 immunoprecipitates, CDK11 

peptide signatures were found in the 80-130 KDa range, consistent with  the molecular weight of 

CDK11p110 (Supplemental Fig. S2) (6).  However, we were unable to detect CDK12 by MRM in 

the 3xFLAG-CYCLIN L1 immunoprecipitates (Supplemental Fig. S2). In 3xFLAG CYCLIN T1 

immunoprecipitates, only CDK9 peptide signatures were found (predominantly between 48-56 

KDa) and these signals coincide with the expected molecular weight of range of both CDK9 

isoforms (42 and 55 KDa) (Supplemental Fig. S2). MRM analyses of 3xFLAG-CYCLIN K1 

immunoprecipitates showed the presence of CDK12 and CDK13/CDC2L5 peptide signatures 

between the 180-250 KDa molecular weight gel slices, consistent with our IP-MS results 

(Supplemental Fig. S2). One CDK9 peptide signature was detected within 48-56 KDa gel slice 

but the signal from this one peptide was substantially lower than CDK12 and CDK13/CDC2L5 

where we detected signals from 2 and 3 peptides, respectively.  This suggests that CDK12 and 
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CDK13 are the primary partners of CYCLIN K1 and that CDK9 is a minor partner at 

endogenous protein expression levels in HEK293A. 
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Supplemental Fig S1. Multiple Reaction Monitoring (MRM) analysis of 

immunoprecipitated complexes.  

Immunoprecipitated protein complexes were separated by SDS-PAGE. The gel was cut into 

approximate molecular weight ranges, subjected to in-gel trypsin digestion and the resulting 

peptides were analyzed by MRM. Different shades of grey on the stacked columns represent 

different peptides from the same protein used in the MRM assay. A minimum of two transitions 

per peptide were summed. A. CYCLIN MRM analysis of endogenous CDK12 and 3xFLAG-

CDK12 protein complexes showed that CDK12 complexes contained CYCLIN K1 and not 

CYCLIN K2. CYCLIN K1 and CYCLIN K2 were distinguished in this assay by CYCLIN K1 

and CYCLIN K2 specific MRM signatures as well as by molecular weight. CYCLIN L1 

appeared to be a minor CDK12 interacting protein using this assay. B. CDK MRM analysis of 

3xFLAG-CYCLIN K1 and 3xFLAG-CYCLIN L1 protein complexes showed that CYCLIN K1 

interacted predominantly with CDK12 and CDK13 and minimally with CDK9, while CYCLIN 

L1 interacted only with CDK11 in this assay.  

 

Supplemental Fig. S2. Multiple Reaction Monitoring (MRM) analysis of CYCLIN 

immunoprecipitated complexes.  

3xFLAG-CYCLIN K1, L1 and T1 complexes were immunoprecipitated from HEK293A cells 

and proteins were analyzed by MRM as described in Supplemental Methods. A CDK MRMs of 

3xFLAG-CYCLIN K1, 3xFLAG-CYCLIN L1 and 3xFLAG-CYCLIN T1 protein complexes 

showed that CYCLIN K1 interacted predominantly with CDK12 and CDK13 and minimally 
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with CDK9, while CYCLIN L1 interacted only with CDK11, and CYCLIN T1 interacted only 

with CDK9. 

 

Supplemental Fig. S3. Quantitative RT-PCR analysis of CDK12 and CYCLIN K mRNA 

expression in siRNA treated cells.  

Quantitative RT-PCR was performed as described in Supplemental Methods. A. CYCLIN K 

mRNA expression was reduced between 60-70% by the CYCLIN K 3’ UTR siRNA in 

HEK293A cells stably expressing 3xFLAG-CDK12 when normalized against a mock transfected 

control. B. CDK12 mRNA expression in the 3xFLAG-CDK12 stable cell line was typically 8-12 

fold higher than the control cell line. Vertical error bars denotes the standard deviation in 3 

replicates. 

 

Supplemental Table S1. Invitrogen STEALTHTM siRNA sequences used to knockdown the 

expression of CDK9, CDK12 and CYCLIN K. 

 

Supplemental Table S2. Multiple Reaction Monitoring (MRM) peptides and transitions 

used for the detection of CDK and CYCLIN proteins. 


