Diagnostic accuracy of PCR alone and compared to galactomannan in bronchoalveolar lavage for the diagnosis of invasive aspergillosis: Systematic review Supplemental material:

Supplementary Table 1: QUADAS-2 tool adapted for our review

Patient selection – Risk of	1. Was a consecutive or random sample of patients
bias	enrolled?
	2. Was a case-control design avoided?
	3. Did the study avoid inappropriate exclusions?
	If case control = high risk, if all yes = low risk.
	Otherwise unclear
Patient selection –	Is there concern that the included patients do not match
Concerns regarding	the review question?
applicability	Considered high = not strictly adherent with
	EORTC/MSG host criteria, low = host + clinical factor
	by EORTC/MSG. Otherwise unclear.
Index test – Risk of bias	Were the index test results interpreted without
	knowledge of the results of the reference standard?
	If no = high risk, if yes = low risk. Otherwise unclear
Reference standard – Risk	Were the reference standard results interpreted without
of bias	knowledge of the results of the index test?
	If no = high risk, if yes = low risk. Otherwise unclear
Reference standard –	Is there concern that the target condition as defined by
Concerns regarding	the reference standard does not match the review
applicability	question?
	Considered high = reference standard not strictly

	adherent with EORTC criteria 2002 or 2008, low =
	reference standard EORTC criteria 2002 or 2008 or these
	could be reapplied using individual patient description.
	Otherwise unclear.
Flow and timing - Risk of	1. Was there an appropriate interval between index
bias	test(s) and reference standard?
	2. Did all patients receive a reference standard?
	3. Did patients receive the same reference standard?
	4. Were all patients included in the analysis?
	If any no = high risk, if all yes = low risk. Otherwise
	unclear
	Q1 considered appropriate interval if BAL performed
	within 2 weeks of infection onset.

The following signaling questionswere considered irrelevant for our review:

Domain	Signalling question	Reason for exclusion
Index test – Risk of	If a threshold was used, was	Results of PCR are read as
bias	it pre-specified?	positive or negative. Real-
		time PCR might have a
		threshold of copies, however
		again, result is read as
		positive or negative
Index test – Concerns	Is there concern that the	Per inclusion criteria only
regarding applicability	index test, its conduct, or	PCR tests were included and
	interpretation differ from the	all PCR tests were

	review question?	considered in our review
Reference standard –	Is the reference standard	EORTC/ MSG clinical
Risk of bias	likely to correctly classify the	criteria considered as
	target condition?	adequate reference standard,
		even though it has
		limitations
Flow and timing -		The answer in all studies
Risk of bias		was yes, therefore this
		question was excluded

Supplementary Table 2: Excluded trials and reason for exclusion

- 5 No reference standard or EORTC/MSG definitions inappropriately applied and data in publication did not permit re-application of consensus definitions
- 2 Used previously known Aspergillus-positive samples
- 4 No BAL performed or no cases of IA
- 5 Population assessed not at risk for IA or data for patients at risk could not be separated from patients not at risk
- 2 Bronchoscopy used for screening
- 2 Case series / case reports
- 1 Non-relevant
- 16 Incomplete data reported to construct 2X2 tables for sensitivity and specificity
- 3 Inclusion of same patients as Buchheidt 2001 included in the review and Reinwald 2012. The publications with more patients or full subgroup analyses were selected for inclusion.

Supplementary Table 3: Study characteristics

Study ID	City,	Year	Year	Study design	N	N (%)	Study population	Criteria used for IPA	N patients
	Country	start	end		patients	Haematological		definition (adherence	with proven /
						malignancy/ N		to the reference	probable
						(%) HSCT		standard Y / N)	
Bretagne	Cre`teil,	1992	1993	Cohort,	28	11 (39.3%) / 9	Immunocompromised patients with	NIAID-MSG 1989	3 (10.7%)
1995(6)	France			prospective		(32.1%)	respiratory signs and unexplained fever	(N)	
Buchheidt	Mannheim,	1995	1998	Cohort,	67	61 (89.5%) / 4	Patients with haematological malignancies,	NIAID-MSG 1989	9 (13.4%)
2001 (7)	Germany			prospective		(6.0%)	neutropenia, fever unresponsiveness to the	(Y)	
							first line antibacterial treatment, and/or		
							newly arisen nonspecific pulmonary		
							infiltrates proven by conventional chest		
							radiography		
Frealle 2009	Lille,	2000	2004	Cohort,	55	55 (100.0%) / 3	Haematological cancer patients, HSCT at	EORTC\MSG 2002	23 (41.8%)
(15)	France			retrospective		(5.5%)	risk for IA	(Y)	
Hadrich	Sfax,	2004	2007	Case-Control,	42	42 (100%) / 0	Haematological cancer patients with febrile	EORTC\MSG 2008	14 (33.3%)
2011 (19)	Tunisia			prospective		(0.0%)	neutropenia and persistent fever for more	modified (N)	

							than 96 h refractory to broad-spectrum		
							antibacterial treatments on whom BALs		
							were performed		
Hayette	Lie`ge,	1997	1998	Cohort,	74	16 (21.6%) / 0	Haematological malignancies, HSCT, SOT,	NIAID-MSG 1989	10 (13.5%)
2001 (20)	Belgium			prospective		(0.0%)	high dose steroids. All patients undergoing	modified (N)	
							bronchoscopy		
Jones 1998	Manchester,	NS	NS	Cohort,	69	69 (100.0%) /	Haematological cancer patients with febrile	Authors defined.	5 (7.2%)
(21)	UK			prospective		NS	episodes unresponsive to antibiotics	Based on NIAID-	
								MSG 1989 (N)	
Khot 2008	Seattle,	2002	2003	Cohort,	94	94 (100.0%) / 8	Patients with haematological malignancies	EORTC\MSG 2002	13 (13.8%)
(22)	WA, US			retrospective		(61.5%)	or undergoing HSCT with pneumonia or	(Y)	
							pulmonary nodules		
Luong 2011	Pittsburgh,	2000	2010	Cohort,	150	0 (0.0%) / 0	Lung transplant recipients who underwent	EORTC\MSG 2008	16 (10.6%)
(24)	PA, US			retrospective		(0.0%)	bronchoscopy for surveillance or diagnostic	modified (N)	
							evaluation		
Musher	Seattle,	1993	2002	Case-Control,	93	93 (100.0%) /	Haematological malignancies, bronchoscopy	EORTC\MSG 2002	46 (49.4%)
2004 (27)	WA, US			retrospective		44 (88.0%)	to evaluate pulmonary nodules or infiltrates	modified (N)	

							that were detected after or while being		
							evaluated for HSCT		
Orsi 2012	Modena,	NS	NS	Case-Control,	19	8 (42.1%) / NS	Critically ill immunocompromised patients	EORTC\MSG 2008	6 (31.6%)
(28)	Italy			retrospective			undergoing BAL for evaluation of	(Y)	
							pulmonary infiltrates		
Raad 2002	Houston,	1996	1997	Cohort,	249	165 (66.3%) /	Haematological malignancies, other cancer	EORTC\MSG 2002	32 (12.8%)
(29)	TX, US			prospective		NS	with chest radiographic findings suggestive	modified (Y)	
							of pneumonia		
Rantakokko	Turku,	NS	NS	Cohort,	66	NS / NS	Haematological malignancies, HSCT, SOT,	EORTC\MSG 2002	11 (16.6%)
-Jalava 2003	Finland			prospective			high dose steroids, bronchiectasis at risk for	(Y)	
(30)							IA		
Reinwald	Mannheim,	2000	2011	Cohort,	226	214 (94.7%) /	haematological patients at high risk for	EORTC\MSG2002	48 (21.2%)
2012 (31)	Germany			retrospective		53 (23.5%)	fungal infections with new lung infiltrates	(Y)	
							detected by high-resolution CT		
Roselló	Barcelona,	NS	NS	Cohort,	42	9 (21.4%) / NS	Haematological malignancies, SOT	EORTC\MSG 2008	7 (16.6%)
2011 (32)	Spain			prospective			immunodeficiency with risk factors for IA	(Y)	
Sanguinetti	Rome, Italy	2001	2002	Cohort,	44	44 (100.0%) /	Patients with haematological malignancies	EORTC\MSG 2002	20 (45.4%)

2003 (33)				prospective		NS	and lung infiltrates	(Y)	
Shahid 2008	Aligarh,	2004	2006	Cohort,	69	0 (0.0%) / 0	Patients with lung carcinoma, receiving	EORTC\MSG 2002	23 (33.3%)
(34)	India			prospective		(0.0%)	chemotherapy or chronic steroid therapy	modified (N)	
Tang 1993	London,	NS	NS	Cohort,	23	14 (60.9%) / 14	Haematological malignancy, HSCT, SOT	Authors defined.	5 (21.7%)
(39)	UK			prospective		(60.9%)	and clinical or radiological evidence of	Based on NIAID-	
							respiratory disease	MSG 1989 (N)	
Torelli 2011	Rome, Italy	2010	2011	Cohort,	158	52 (42.6%) /	Haematological malignancies, COPD,	EORTC\MSG 2008	17 (10.7%)
(41)				prospective		NS	cirrhosis, cancer receiving chemotherapy,	modified (N)	
							solid organ transplant recipient, HIV, steroid		
							use, or recipient of T-cell		
							immunosuppressant with pneumonia, fever,		
							suspected invasive fungal infection		
Verweij	Nijmegen,	NS	NS	Cohort,	19	17 (89.5%) / 5	Neutropenic patients with fever persisting	Authors defined.	9 (47.3%)
1995 (43)	The			prospective		(26.3%)	despite treatment with broad-spectrum	Based on NIAID-	
	Netherlands						antibacterial agents and pulmonary	MSG 1989 (Y)	
							infiltrates		

NR – not required, NS – not stated, HSCT – hematologic stem cell transplant, SOT – solid organ transplant, COPD- chronic obstructive pulmonary disease, HIV – human immunodeficiency virus, ICU – intensive care unit, NIAID-MSG – National institute of allergy and infectious diseases – mycoses study group. EORTC\MSG - European Organisation for Research and Treatment of Cancer – Mycoses Study Group.

Supplementary Table 4: QUADAS-2 risk of bias assessment

Study ID	Patient selection – Risk of bias	Patient selection – Concerns regarding applicability	Index test – Risk of bias	Reference standard – Risk of bias	Reference standard - Concerns regarding applicability	Flow and timing - Risk of bias
Bretagne 1995 (6)	Н	L	L	U	U	U
Buchheidt 2001 (7)	L	L	L	L	L	L
Frealle 2009 (15)	L	L	L	L	L	L
Hadrich 2011 (19)	Н	U	L	U	Н	U
Hayette 2001 (20)	Н	L	Н	L	Н	U
Jones 1998 (21)	Н	U	L	Н	U	U
Khot 2008 (22)	L	U	L	U	L	U
Luong 2011 (24)	Н	L	L	U	Н	U
Musher 2004 (27)	Н	L	L	U	Н	Н
Orsi 2012 (28)	Н	L	U	U	U	L
Raad 2002 (29)	L	L	L	U	L	U

Rantakokko-Jalava 2003						
(30)	L	U	Н	U	L	U
Reinwald 2012 (31)	L	U	U	L	L	L
Roselló 2011 (32)	L	U	Н	U	U	U
Sanguinetti 2003 (33)	L	U	L	L	L	L
Shahid 2008 (34)	Н	U	L	L	Н	L
Tang 1993 (39)	L	L	L	U	U	U
Torelli 2011 (41)	L	Н	L	L	Н	L
Verweij 1995 (43)	Н	U	L	L	L	U

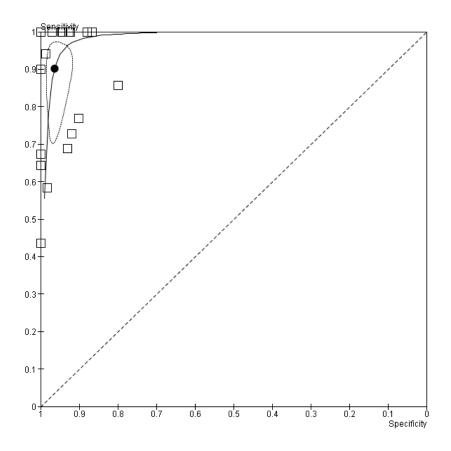
 $H-high\ risk,\ U-unclear,\ L-low\ risk$

Supplementary Table 5: PCR methods

Study ID	PCR method	Volume	Cell wall	DNA	Cycle	Primer gene	Primer sequence	Internal	Contam	Aspergillus
		used for	disruption	extraction	number			/	ination	spp. detected
		PCR	method	method				inhibiti	control	by primer
								on		
								control		
Bretagne	Standard	1.5 cc	Beads	Phenol-	40	Mitochondrial	5' GAA AGG TCA GGT GTT CGA	Y	Y	A. fumigatus,
1995 (6)			beating	chloroform		DNA	GTC AC 3' (804 to 826)/ 5' CTT TGG			A. flavus, A.
						fragment	TTG CGG GTT TAG GGA TT 3' (914			terreus, A.
							to 938)			niger
Buchheidt	Nested	1.5 cc	Lyticase	Phenol-	23+35	18S rRNA	5' CGG CCC TTA AAT AGC CCG 3'	Y	Y	Various A.
2001 (7)				chloroform			(1296–1313) / 5' GA CCG GGT TTG			spp.
							ACC AAC TTT 3' (1681–1700)			
Frealle 2009	Real-time,	NS	Lyticase	QIAgen	55	18S rRNA	5'-	Y	Y	A. fumigatus,
(15)	LightCycler						CTGTTAGTGCGGGAGTTCAAAXT			A. flavus , A.
							CT-3' / 5'-			niger, A.
							CTGAGCTAATTTCTTTCAACCCA			terreus

							AGGGA-3'			
Hadrich 2011	Real-time,	NS	NS	QIAgen	45	18S rRNA	5 ' -AAG CTC GTA GTT GAA CCT	Y	NS	A. fumigatus,
(19)	TaqMan,						TG-3 ' / 5'-ATG GTC CTA GAA ACC			A. flavus, A.
	PCR-ELISA						AAC AA-3 ′ (45-294)			terreus , A.
										niger , A.
										nidulans, A.
										ustus, A.
										glaucus, A.
										versicolor
Hayette 2001	Nested	1-5 cc	NS	Phenol-	30+30	Alkaline	5' AGCACCGACTACATCTAC 3' / 5'	Y	NS	A. fumigatus,
(20)				chloroform		protease gene	GAGAT GGTGTTGGTGGC 3'			A. flavus, A.
										terreus, A.
										niger , A.
										nidulans , A.
										glaucus
Jones 1998	PCR-ELISA	0·2 cc	Lyticase	Phenol-	40	Mitochondrial	5'	Y	Y	A. fumigatus,
(21)				chloroform		DNA	GAAAGGTCAGGTGTTCGAGTCA			A. flavus , A.

						fragment	3' (804-826) / 5' CTTGGTTGCGGGTTTAGGGATT 3' (916-938)			niger
Khot 2008 (22)	Real-time, TaqMan	2-5 cc	Beads beating	Master Pure Yeast kit	45	18S rRNA	5' GAT AAC GAA CGA GAC CTC GG 3' / 5' AGA CCT GTT ATT GCC GCG C 3'	Y	Y	Various A.
Luong 2011 (24)	Real-time	0·5 cc	NS	QIAgen	NS	18S rRNA	pan A. 5' GTGGAGTGATTTGTCTGCTTAAT TG 3' (1215–1239) / 5' TCTAAGGGCATCACAGACCTGTT 3' (1345–1367) A. fumigatus 5' GCCCGCCGTTTCGAC 3' (86-100) / 5' CCGTTGTTGAAAGTTTTAACTGA TTAC 3' (195-221) A. terreus 5' CATTACCGAGTGCGGGTCTTTA 3' (12-33) / 5'	Y	Y	pan- Aspergillus, A. fumigatus, A. terreus


							CCCGCCGAAGCAACAAG 3' (65-			
							81)			
Musher 2004	Real-time	1.5 cc	NS	Master Pure	45	18S rRNA	5' GATACCGTYGTAGTCTTA 3' / 5'	Y	Y	Various A.
(27)				Yeast kit			TG TCTGGACCTGGTGAGT 3'			spp.
Orsi 2012	Real-time	1-2 cc	Beads	MycXtra TM	36	18S rRNA	5' GAT AAC GAA CGA GAC CTC	Y	Y	Various A.
(28)			beating				GG 3' / 5' AGA CCT GTT ATT GCC			spp.
							GCG C 3'			
Raad 2002	Standard	1 cc	NS	Phenol-	40	Mitochondrial	ALP 5' AGCACCGACTACATCTAC	Y	Y	A. fumigatus,
(29)				chloroform		DNA	3' / 5' GAGATGGTGTTGGTGGC 3'			A flavus, A.
						fragment,	mitochondrial 5'			terreus, A.
						Alkaline	GAAAGGTCAGGTGTTCGAGTCAC			niger
						protease gene	3' / 5'			
							CTTTGGTTGCGGGTTTAGGGATT			
							3'			
Rantakokko-	Real-time,	5-10 cc	Lyticase	QIAgen,	45	Mitochondrial	5' GAA AGG TCA GGT GTT CGA	Y	Y	A. fumigatus,
Jalava 2003	LightCycler			DNA-Pure		DNA	GTC A 3' / 5' CTT GGT TGC GGG			A. flavus, A.
(30)				yeast		fragment	TTT AGG GAT T 3'			terreus, A.

				genomic kit,						niger
				High Pure						
				PCR						
				template						
				preparation						
				kit, Master						
				Pure Yeast						
				kit						
Reinwald	Nested	1.5 cc	Lyticase	Phenol-	58	18S rRNA	AFU7S CGG CCC TTA AAT AGC	Y	Y	Various A.
2012 (31)				chloroform			CCG AFU7AS GA CCG GGT TTG			spp
							ACC AAC TTT			
Roselló 2011	Real-time,	0·4 cc	NS	QIAgen	NS	18S rRNA	NS	NS	NS	Various A.
(32)	SmartCycler									spp
Sanguinetti	Real-time,	1.5 cc	NS	QIAgen	40+30	18S rRNA	5' CCG ATT ACG TCC CTG CCC TT	NS	Y	A. fumigatus,
2003 (33)	iCyclerIq,						3' / 5' TTG ACC AAC TTT CCG GCT			A. flavus, A.
	Nested (used						CTG 3'			glaucus, A.
	in analysis)									niger, A.

										terreus
Shahid 2008	Standard	0·1 cc	NS	Phenol-	35	Mitochondrial	5' GAA AGG TCA GGT GTT CGA	Y	Y	A. fumigatus,
(34)				chloroform		DNA	GTC AC 3' / 5' CTT TGG TTG CGG			A. flavus, A.
						fragment	GTT TAG GGA TT 3'			niger
Tang 1993	Standard	0·25 cc	Beads	Phenol-	42	Alkaline	5'AGCACCGACTACATCTAC3' / 5'	NS	Y	A. fumigatus,
(39)			beating	chloroform		protease gene	GAGAT GGTGTTGGTGGC 3'			A.flavus
Torelli 2011	Real-time,	5 cc	Beads	MycXtra	36	18S rRNA	5' GAT AAC GAA CGA GAC CTC	Y	Y	Various A.
(41)	SmartCycler,		beating				GG 3' / 5' AGA CCT GTT ATT GCC			spp. And
	Real-time in-						GCG C 3'			specially A.
	house									fumigatus, A.
										flavus, A.
										terreus, A.
										niger
Verweij 1995	Standard	5-10 cc	Beads	Phenol-	30	18S rRNA	5' CCTGGT TGATCCTGCCAGTA 3'	NS	NS	Various A.
(43)			beating	chloroform			/ 5' GCTTGATCCTTCTGCA GGTT 3'			spp

 $PCR-polymerase\ chain\ reaction,\ ELISA-Enzyme-Linked\ Immunosorbent\ Assay,\ Y-yes,\ NS-not\ stated$

Supplementary Figure 1: HSROC for PCR in the diagnosis of proven or probable IPA.

Studies points are scaled by the inverse of their standard errors. The summary point with 95% confidence region is shown: sensitivity 90.2% (95% CI 77.2-96.1%), specificity 96.4% (95% CI 93.3-98.1%).