# Okamoto et al Supplemental Material

## Legends to the Supplementary Figures

#### Figure S1: Sequence alignment of all 6 identified M11L orthologs

Residues marked in cyan are located in the binding grove of M11L are conserved between M11L and SPPV14. Green indicates residues that are located in the binding grove of M11L are conserved between M11L and SPPV14 and appear as a group to determine anti-apoptotic activity within the 6 M11L orthologs. Magenta indicates residues that are different between DPV83gp022 and DPV84gp022. & indicate additional residues that are conserved in all 6 M11L orthologs and are located in the M11L binding groove. \* indicates residues fully conserved across all sequences, : highly conserved and . relatively conserved residues.

## Figure S2: The putative SPPV14 binding grove

Ribbon diagram of M11L (green) bound to the Bak BH3 peptide (yellow, N-terminus at bottom); PDB:2JBY (1). Highlighted in cyan are four M11L residues (I37, Y41, A82 and F122) that are strictly conserved across a family of related poxvirus sequences. Highlighted in magenta are four M11L residues (M52, T67, L68, A71) that display sequence variation between functionally active and inactive proteins described here (see Discussion). Particular constellations of these four residues can be correlated with prosurvival activity.

## Figure S3: SPPV14 does not inhibit Fas-induced cell death

Bax/Bak ( $bax^{-/-}/bak^{-/-}$ ) deficient or wild-type MEFs infected with retrovirus carrying M11L, SPPV14 or B14 were treated with (A) FasL (100 ng/mL) alone or additionally, with (B) cycloheximide (1 µg/mL) and anti-FLAG antibody (2 µg/mL). Cell viability was determined by propidium iodide (PI) exclusion at each time point. Data represent means ± SD from 2 independent experiments.

#### **SM References**

1. Kvansakul M, van Delft MF, Lee EF, Gulbis JM, Fairlie WD, Huang DC, *et al.* A structural viral mimic of prosurvival Bcl-2: a pivotal role for sequestering proapoptotic Bax and Bak. *Mol Cell* 2007 Mar 23; **25**(6): 933-942.

# Okamoto et al Fig. S1

| м11т.        | MMSRLKTAVYDYLNDVDITECTEMDLLCOLSNCCDFTNETYAKNYDTLYDIMERDILS                                                                                                      | 58  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SPPV14       | MDNCNYNTEKVI.NVYI.RDI.RTESI.NNNEI.ETI.TMTRECCEVTKKDYKTEFNEI.CNFTI.ONNVK                                                                                         | 63  |
| GP011L       | MSRLKEVVYTYLNGGDITECTEIDLLCOLVNCCNFINNTYAKNYDVLCDIMERDILS                                                                                                       | 57  |
| LD17         | MDNCNYNIEKVLNVYLRDLRIESLNNNELAILIMIRECCEVIKKDYKTEFNEICNFILRNNVK                                                                                                 | 63  |
| SPV12L       | MYKKYNSNVCIRNVLYVYLKYNTINKLSRYERMIYTKIKNOCEAIKYRYCNDFNSVTCILEYDENK                                                                                              | 66  |
| DPV83qp022   | MEAAIEFDEIVKKLLNIYINDICTTGEKRLLNNYEKSILDRIYKSCEYIKKNYELDFNSMYNQININDIT                                                                                          | 70  |
| DPV84qp022   | MEAAIEFDEIVKKLLNIYINDICT <mark>M</mark> GEKRLLNNYEKSILDRIYKSCEYIKKNYELDFNSMYNQININDIT                                                                           | 70  |
| 51           | ······································                                                                                                                          |     |
|              |                                                                                                                                                                 |     |
|              | &                                                                                                                                                               |     |
| M11L         | YNIVNIKN <mark>TL</mark> TF <mark>A</mark> LR-DASPS <mark>V</mark> KL <mark>A</mark> TLT <mark>L</mark> LASVIKKLNKIQHTDAAMFSEVIDGIVAEEQQVIG <mark>F</mark>      | 122 |
| SPPV14       | SCYDINDVKN <mark>II</mark> IE <mark>T</mark> INSDFRPS <mark>V</mark> IL <mark>A</mark> SIS <mark>L</mark> LSIIIKKKKDENNEVVDDDLALNELINKFSSYQKDIIS <mark>F</mark> | 133 |
| GP011L       | YNIENIKK <mark>AL</mark> GF <mark>A</mark> LL-DASPSVKLATLALLSIILKKLNKIRHTEACVFSDVIDGITAEENKVIGF                                                                 | 121 |
| LD17         | SCYDINDVKN <mark>II</mark> IE <mark>T</mark> INSDFRPSVILASISLLSIIIKKKKNENNEVVNDDLALNELINTFSSYQKDIISF                                                            | 133 |
| SPV14        | YIDNVHK <mark>EV</mark> IS <mark>I</mark> LLSDSRPSIKLAAISLLSIIIDKLICRNIRIAKYIIDDIINIISEDGIYIILF                                                                 | 131 |
| DPV83gp022   | TSDIKS <mark>KI</mark> IE <mark>A</mark> LLIDSRPSVKLATLSFISLIAEKWG-EKNR <mark>A</mark> KIMEILSNEIVEKISNNGKDFIDF                                                 | 135 |
| DPV84gp022   | TSDIKS <mark>KI</mark> IE <mark>S</mark> LLIDSRPSVKLATLSFISLIAEKWG-EKNR <mark>T</mark> KIMEILSNEIVEKISNNGKDFIDF                                                 | 135 |
|              | ···· · · · * **· **···· · · · · · · · ·                                                                                                                         |     |
|              |                                                                                                                                                                 |     |
| M1 1 T       |                                                                                                                                                                 |     |
|              | IQKKCKINTTIINVRSGGCKISVILTAAVVG-FVAIGILKWIRGT 100                                                                                                               |     |
| SPPV14       |                                                                                                                                                                 |     |
| GPUIIL       | IQEKIKINTTIINKKSKLPVILSTAMVATLIVIGVIKWKKGT 103                                                                                                                  |     |
|              |                                                                                                                                                                 |     |
| DIVIS and 22 |                                                                                                                                                                 |     |
| MDV8/ap22    |                                                                                                                                                                 |     |
| HI VO49PZZ   | TOWDODI''DDI''DII'NILKIII'GAILGIIAIIICAILLAGII- 1/3                                                                                                             |     |

Okamoto *et al* Fig. S2



