

FIG S1 FURTA assay. Introduction of pBSP*basA* into *E. coli* H1717 produced red (Lac⁺) colonies on McConkey agar supplemented with $\geq 20 \ \mu$ M FeSO₄ concentrations, while *E. coli* H1717 gave white (Lac⁻) colonies on McConkey agar at the same FeSO₄ concentrations. The addition of 100 μ M DIP restored the Lac⁺ phenotype both in *E. coli* H1717(pBSP*basA*) and *E. coli* H1717.

FIG S2 Effect of $Ga(NO_3)_3$ on *A. baumannii* growth in flask culture. Selected strains were grown for up to 48 h in M9-DIP supplemented with increasing $Ga(NO_3)_3$ concentrations (0 to 128 μ M). Solid and dotted lines show OD_{600} values corresponding to 50% and 90% growth inhibition at 48 h relative to the untreated controls, respectively.

FIG S3 Effect of $Ga(NO_3)_3$ on siderophore production. Siderophore production by *A*. *baumannii* strains ACICU, A376, A399 and A451 after 48 h growth in M9-DIP supplemented with different $Ga(NO_3)_3$ concentrations (0, 2, 4, and 8 μ M).

FIG S4 Growth of *A. baumannii* ACICU in human serum in flasks (A) and microtiter plates (B). White symbols: serum without added iron; grey symbols: serum supplemented with 200 μ M FeCl₃. Data are the means (\pm SD) of two independent experiments.

FIG S5 Toxicity of Ga(NO₃)₃ (A) and NaNO₃ (B) to *G. mellonella* larvae incubated at 37°C for up to 96 h. Concentrations 0-52 mmol/kg (corresponding to 0-3.0 M) Ga(NO₃)₃ and 0-102 mmol/kg (corresponding to 0-6.0 M) NaNO₃ were tested.

Strain	Country of origin	Sequence group (SG) ^{<i>a</i>} and relevant characteristics	Reference
ATCC 19606 ^T	United States	SG5; type strain	
ATCC 17978	France	NV ^b ; complete genome sequenced	6
RUH 875	The Netherlands	SG2; representative for ICL I	5
RUH 134	The Netherlands	SG1; representative for ICL II	5
RUH 5875	The Netherlands	SG3; representative for ICL III	10
AYE	France	SG2; related to ICL I, complete genome sequenced	9
ACICU	Italy	SG1; related to ICL II, complete genome sequenced	4
50C	Italy	SG4; related to ICL II, colistin resistant	2, 3
A37	Singapore	SG8	1,7
A60	Argentina	SG1	1,7
A287	New Zealand	SG1	1,7
A369	Spain	SG1	1,7
A371	Czech Republic	SG1	1,7
A372	Greece	SG2	1,7
A374	The Netherlands	SG4	1,7
A376	Austria	SG5	1,7
A377	Germany	SG3	1,7
A380	United Kingdom	SG1	1,7
A384	Sweden	SG2	1,7
A386	Greece	SG2	1,7
A387	Greece	SG1	1,7
A388	Greece	SG7	1,7
A389	Denmark	SG5	1,7
A390	Bulgaria	SG2	1,7
A392	Germany	SG1	1,7
A397	Greece	SG1	1,7
A399	Turkey	SG4	1,7
A402	Taiwan	SG1	1,7
A404	Poland	SG2	1,7
A410	Poland	SG1	1,7
A411	Poland	SG2	1,7
A414	Poland	SG2	1,7
A416	Poland	SG1	1,7
A424	Croatia	SG2	1,7
A429	Croatia	SG2	1,7

TABLE S1 Characteristics of A. baumannii strains used in this study

A430	Croatia	SG2	1,7
A435	Croatia	SG2	1,7
A436	Croatia	SG2	1,7
A437	Croatia	SG2	1,7
A438	Bulgaria	SG2	1,7
A440	Bulgaria	SG2	1,7
A443	Slovenia	SG2	1,7
A451	Poland	SG2	1,7
A453	Slovakia	SG1	1,7
A457	Estonia	SG7	1,7
A458	Estonia	SG2	1,7
A461	Portugal	SG4	1,7
A462	Portugal	SG4	1,7
A464	Portugal	SG4	1,7
A468	Poland	SG1	1,7
A469	Poland	SG2	1,7
A472	Poland	SG2	1,7
A473	Poland	SG1	1,7
A474	Poland	SG1	1,7
A479	United Kingdom import from Pakistan	SG2	1,7
A483	United Kingdom import from Malaysia	SG4	1,7
A486	Brazil	SG4	1,7
A491	India	SG1	1,7

^{*a*} SG determination was performed as previously described (Turton *et al.*, 2007).

^b NV, new variant SG (4).

REFERENCES

1. **Antunes LC, Imperi F, Towner KJ, Visca P.** 2011. Genome-assisted identification of putative iron-utilization genes in *Acinetobacter baumannii* and their distribution among a genotypically diverse collection of clinical isolates. Res Microbiol. **162**:279-284.

2. **D'Andrea MM, Giani T, D'Arezzo S, Capone A, Petrosillo N, Visca P, Luzzaro F, Rossolini GM.** 2009. Characterization of pABVA01, a plasmid encoding the OXA-24 carbapenemase from Italian isolates of *Acinetobacter baumannii*. Antimicrob. Agents Chemother. **53:**3528-3533.

3. **D'Arezzo S, Capone A, Petrosillo N, Visca P; GRAB.** 2009. Epidemic multidrug-resistant *Acinetobacter baumannii* related to European clonal types I and II in Rome (Italy). Clin. Microbiol. Infect. **15:**347-357.

4. Iacono M, Villa L, Fortini D, Bordoni R, Imperi F, Bonnal RJ, Sicheritz-Ponten T, De Bellis G, Visca P, Cassone A, Carattoli A. 2008. Whole-genome pyrosequencing of an epidemic multidrug-resistant *Acinetobacter baumannii* strain belonging to the European clone II group. Antimicrob. Agents Chemother. **52**:2616-2625.

5. Nemec A, Dijkshoorn L, van der Reijden TJ. 2004. Long-term predominance of two pan-European clones among multi-resistant *Acinetobacter baumannii* strains in the Czech Republic. J. Med. Microbiol. **2:**147–153.

Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M, Snyder M.
2007. New insights into *Acinetobacter baumannii* pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21:601-614.

7. Towner KJ, Levi K, Vlassiadi M; ARPAC Steering Group. 2008. Genetic diversity of carbapenem-resistant isolates of *Acinetobacter baumannii* in Europe. Clin. Microbiol. Infect. 14:161-167.

8. **Turton JF, Gabriel SN, Valderrey C, Kaufmann ME, Pitt TL.** 2007. Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of *Acinetobacter baumannii*. Clin. Microbiol. Infect. **8:**807–815.

9. Vallenet D, Nordmann P, Barbe V, Poirel L, Mangenot S, Bataille E, Dossat C, Gas S, Kreimeyer A, Lenoble P, Oztas S, Poulain J, Segurens B, Robert C, Abergel C, Claverie JM,

Raoult D, Médigue C, Weissenbach J, Cruveiller S. 2008. Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS One. 3:e1805.

10. van Dessel H, Dijkshoorn L, van der Reijden T, Bakker N, Paauw A, van den Broek P, Verhoef J, Brisse S. 2004. Identification of a new geographically widespread multiresistant *Acinetobacter baumannii* clone from European hospitals. Res. Microbiol. **2**:105-112.

TABLE S2 Ga(NO₃)₃ inhibitory concentrations (IC₅₀ and IC₉₀, μ M) at 24 and 48 h in a collection of 58 *A. baumannii* strains cultivated in M9-DIP. Results are the means (± SD) of two independent experiments.

Strain	24 h ^{<i>a</i>}						48 h			
		IC ₅₀]	C ₉₀	IC ₅₀	IC ₉₀			
ATCC 19606 ^T	ND			ND		2.8 ± 1.4	5.6 ± 2.2			
ATCC 17978	9.8	±	2.9	47.9	± 6.4	22.7 ± 3.3	53.2 ± 4.6			
RUH 875	5.7	±	1.5	26.4	± 1.1	11.6 ± 5.4	58.5 ± 7.4			
RUH 134	6.9	±	0.2	31.6	± 0.6	$20.3 \hspace{0.2cm} \pm \hspace{0.2cm} 8.3$	51.1 ± 2.1			
RUH 5875	1.1	±	0.3	3.1	± 0.2	3.3 ± 0.4	14.0 ± 3.3			
AYE	4.7	\pm	0.8	32.4	± 0.6	1.9 ± 0.1	9.8 ± 3.2			
ACICU	4.6	\pm	1.8	15.9	± 1.6	13.0 ± 3.3	35.9 ± 5.4			
50C	7.5	\pm	0.6	56.8	± 6.2	$22.5 \hspace{0.2cm} \pm \hspace{0.2cm} 1.3$	$64.0 \hspace{0.2cm} \pm \hspace{0.2cm} 0.0$			
A37	6.4	\pm	0.1	21.8	± 2.5	11.2 ± 1.4	35.2 ± 5.0			
A60	3.9	±	0.0	35.2	± 6.5	13.2 ± 0.7	$49.1 \hspace{0.2cm} \pm \hspace{0.2cm} 3.5$			
A287	5.0	±	1.5	12.1	± 2.8	8.7 ± 1.6	30.6 ± 1.3			
A369	2.6	±	2.1	5.5	± 2.5	6.3 ± 0.3	17.7 ± 3.7			
A371	3.7	±	0.2	14.7	± 1.3	13.3 ± 1.4	$45.9 \hspace{0.2cm} \pm \hspace{0.2cm} 2.7$			
A372	6.2	±	0.4	17.4	± 2.5	11.9 ± 1.3	36.0 ± 5.7			
A374	1.2	±	0.1	2.7	± 1.3	1.2 ± 0.1	2.6 ± 0.8			
A376	14.7	±	1.6	45.7	± 3.0	$27.9 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8$	57.2 ± 0.6			
A377	5.1	±	2.3	17.7	± 6.2	$14.1 \hspace{0.2cm} \pm \hspace{0.2cm} 2.3$	$49.6 \hspace{0.2cm} \pm \hspace{0.2cm} 6.6$			
A380	1.3	±	0.1	3.3	± 0.2	1.9 ± 0.3	9.0 ± 2.8			
A384	4.4	±	0.9	24.5	± 0.5	13.5 ± 0.8	31.7 ± 4.9			
A386	2.6	±	0.1	9.4	± 3.8	8.5 ± 2.1	$21.0 \hspace{0.2cm} \pm \hspace{0.2cm} 8.6$			
A387	5.0	\pm	3.2	17.4	\pm 8.3	2.2 ± 1.1	18.0 ± 6.4			
A388	2.2	\pm	0.3	13.8	± 2.9	6.5 ± 0.2	$25.4 \hspace{0.2cm} \pm \hspace{0.2cm} 1.3$			
A389	2.7	\pm	0.3	10.2	\pm 4.1	6.1 ± 0.4	16.4 ± 2.3			
A390	6.0	\pm	0.2	15.4	± 0.6	11.0 ± 0.1	$25.9 \hspace{0.2cm} \pm \hspace{0.2cm} 5.6$			
A392	3.3	\pm	0.8	15.5	± 6.2	4.2 ± 2.5	13.6 ± 2.0			
A397	1.0	±	0.1	1.7	± 0.1	1.3 ± 0.0	2.5 ± 0.7			
A399	7.8	\pm	0.2	34.6	± 0.5	15.3 ± 0.4	35.2 ± 5.9			
A402	1.7	\pm	0.1	16.6	\pm 4.3	1.4 ± 0.1	12.3 ± 3.0			
A404	2.8	±	0.5	5.6	± 0.8	12.4 ± 0.5	18.5 ± 3.6			
A410	1.3	\pm	0.2	4.6	± 3.0	3.4 ± 0.1	13.2 ± 1.7			
A411	7.3	±	0.3	19.3	± 5.3	$19.9 \hspace{0.2cm} \pm \hspace{0.2cm} 6.5$	56.7 ± 8.8			
A414	3.3	±	0.0	6.4	± 0.5	8.0 ± 0.5	$24.5 \hspace{0.2cm} \pm \hspace{0.2cm} 4.2$			
A416	1.2	±	0.1	8.0	± 0.2	1.4 ± 0.1	3.7 ± 0.1			
A424	3.0	±	0.7	12.7	± 2.8	9.0 ± 2.5	$21.2 \hspace{.1in} \pm \hspace{.1in} 0.9$			
A429	1.5	±	0.1	6.4	± 1.9	9.4 ± 3.9	18.6 ± 5.4			
A430	4.9	\pm	1.8	14.0	± 0.6	13.0 ± 0.4	28.9 ± 2.4			

A435	1.4	±	0.1	1.9	±	0.1	1.3	±	0.1	3.0	±	0.6
A436	1.2	±	0.2	12.5	±	1.7	10.8	\pm	3.0	28.9	\pm	4.5
A437	1.3	±	0.1	2.6	\pm	0.8	4.3	±	1.3	11.8	\pm	0.4
A438	1.3	±	0.1	3.0	\pm	1.4	1.5	±	0.7	4.4	\pm	1.7
A440	1.2	±	0.0	2.0	\pm	0.0	1.6	±	0.3	10.3	\pm	3.4
A443	ND			ND			3.9	±	3.0	15.5	\pm	4.9
A451	6.5	±	0.5	23.1	±	3.0	15.7	\pm	1.1	34.5	\pm	2.1
A453	1.4	±	0.3	4.2	\pm	3.0	6.5	±	0.0	23.8	\pm	0.2
A457	1.3	±	0.1	8.8	\pm	1.1	5.4	±	2.5	24.6	\pm	1.7
A458	1.3	±	0.1	2.1	\pm	0.1	1.2	\pm	0.3	11.6	\pm	6.3
A461	ND			ND			27.5	±	3.5	80.0	\pm	4.2
A462	4.2	±	0.6	19.9	\pm	3.5	13.3	±	1.3	46.3	\pm	1.6
A464	1.5	±	0.1	7.8	\pm	1.7	3.3	±	0.2	19.3	\pm	6.9
A468	2.2	±	0.9	4.4	\pm	0.6	3.3	\pm	0.1	13.6	\pm	1.2
A469	2.1	±	1.0	4.8	\pm	0.0	2.9	\pm	0.4	7.2	\pm	1.1
A472	7.6	±	0.4	41.8	\pm	1.5	10.8	±	0.4	15.7	\pm	0.5
A473	ND			ND			3.4	\pm	0.6	14.2	\pm	1.1
A474	6.2	±	1.1	25.8	±	3.7	18.2	\pm	4.2	39.0	\pm	7.5
A479	4.4	±	1.2	15.1	±	1.3	10.7	±	0.4	27.0	\pm	6.2
A483	3.5	±	0.1	13.1	\pm	4.1	11.4	\pm	0.5	29.2	\pm	0.2
A486	1.3	±	0.1	2.9	\pm	1.6	6.0	±	4.0	61.5	\pm	7.8
A491	3.7	±	0.1	37.6	±	8.3	11.5	±	1.2	63.9	±	6.1

^{*a*} ND, not determined due to poor growth.

TABLE S3 Ga(NO₃)₃ inhibitory concentrations (IC₅₀ and IC₉₀, μ M) at 48 h in a collection of 58 *A*. *baumannii* strains cultivated in human serum. Results are the means (± SD) of two independent experiments.

Strain	-	IC_{50}		IC ₉₀			
ATCC 19606 ^T	ND^{a}			ND^{a}			
ATCC 17978	2.2	±	0.2	$3.8 \pm$	0.0		
RUH 875	5.3	±	0.8	$14.6 \pm$	2.1		
RUH 134	7.9	±	0.2	$15.0 \pm$	0.4		
RUH 5875	5.4	±	0.8	14.5 \pm	5.2		
AYE	5.9	±	0.4	10.7 \pm	1.3		
ACICU	6.2	±	0.4	14.0 \pm	2.1		
50C	9.7	±	0.5	$30.4~\pm$	2.3		
A37	12.1	±	0.4	$45.3 \ \pm$	8.6		
A60	3.9	±	0.1	$7.7 \pm$	0.1		
A287	23.7	±	1.7	$54.5~\pm$	3.6		
A369	26.2	±	5.5	$58.4 \pm$	3.7		
A371	34.7	±	6.4	$64.0 \hspace{0.2cm} \pm \hspace{0.2cm}$	4.5		
A372	16.0	±	0.1	58.0 \pm	3.6		
A374	2.8	±	0.4	$9.3 \pm$	3.6		
A376	3.0	±	0.1	$7.0 \pm$	0.2		
A377	2.8	±	0.8	$4.0 \pm$	0.0		
A380	6.2	±	0.8	$7.6 \pm$	0.3		
A384	12.7	±	1.1	$37.2 \pm$	6.9		
A386	5.5	±	1.0	$9.4 \pm$	1.8		
A387	5.2	±	0.3	$8.6 \pm$	0.3		
A388	6.8	±	0.8	$15.0 \pm$	1.5		
A389	5.7	±	2.7	$18.7 \pm$	3.7		
A390	5.8	±	2.5	$15.5 \pm$	0.6		
A392	12.4	±	0.6	26.6 \pm	0.2		
A397	7.1	±	1.8	$14.4 \pm$	2.3		
A399	21.0	±	5.7	$58.7 \pm$	5.9		
A402	5.0	±	1.3	$17.2 \pm$	1.6		
A404	4.2	±	0.1	$15.4 \pm$	0.4		
A410	2.5	±	0.1	6.7 ±	0.5		
A411	6.3	±	3.3	$13.2 \pm$	3.4		
A414	12.9	±	2.1	$29.1 \hspace{0.2cm} \pm \hspace{0.2cm}$	0.9		
A416	3.7	±	0.4	$13.7 \pm$	0.6		
A424	6.0	±	0.3	$15.2 \pm$	1.2		
A429	2.5	±	0.7	$4.0 \pm$	0.4		
A430	6.0	±	0.3	$16.2 \pm$	2.1		
A435	6.0	±	1.2	$27.0 \ \pm$	6.2		

A436	1.6	±	0.3	$5.3 \pm$	0.4
A437	7.8	±	3.2	$40.5 \ \pm$	14.7
A438	7.4	±	0.1	20.6 \pm	0.4
A440	3.8	±	0.7	$9.0 \pm$	2.1
A443	9.3	±	0.4	$26.9 \ \pm$	2.6
A451	12.2	±	0.5	$48.2 \hspace{0.2cm} \pm \hspace{0.2cm}$	1.1
A453	6.4	±	0.0	$13.3 \pm$	0.0
A457	4.9	±	2.5	$11.8 \pm$	5.2
A458	8.9	±	1.2	$21.2 \pm$	1.7
A461	4.0	±	0.1	$13.2 \pm$	2.3
A462	3.3	±	0.3	$7.7 \pm$	0.2
A464	11.0	±	0.6	$31.8~\pm$	2.1
A468	13.0	\pm	3.0	32.5 \pm	0.6
A469	24.3	±	2.6	$63.9 \hspace{0.2cm} \pm \hspace{0.2cm}$	9.1
A472	4.0	±	0.3	$7.5 \pm$	0.4
A473	4.8	±	0.3	$13.2 \pm$	1.6
A474	2.6	±	0.2	$5.1 \pm$	1.0
A479	3.0	±	0.1	7.1 ±	0.4
A483	7.1	±	0.7	$12.5 \pm$	2.3
A486	5.4	±	0.3	$10.2 \pm$	0.2
A491	6.7	±	1.3	14.0 \pm	2.3

^{*a*} ND, not determined due to poor growth.

Strain	Growth (OD ₆₀₀)								Relative siderophore production $(U/OD_{600})^a$						
		2	4 h			4	8 h			24 1	1	48 h			
	N	19-DIP	N +	19-DIP · FeCl ₃	M	19-DIP	M +	I9-DIP FeCl ₃	М	9-DIP	M9-DIP + FeCl ₃	M9	-DIP	M9-DIP + FeCl ₃	
ATCC	0.08	± 0.01	0.35	± 0.08	0.09	± 0.01	0.32	± 0.01	3.33	± 2.1	ND	38.3	± 2.92	ND	
19606 ¹ ATCC 17978	0.38	± 0.02	0.41	± 0.09	0.26	± 0.03	0.41	± 0.05	65.30	± 2.16	ND	75.00	± 7.0	ND	
RUH 875	0.09	± 0.01	0.28	± 0.01	0.09	± 0.01	0.25	± 0.02	112.90	± 12.29	ND	129.84	± 7.3	ND	
RUH 134	0.11	± 0.01	0.47	± 0.02	0.13	± 0.01	0.42	± 0.02	90.80	± 18.01	ND	104.42	± 15.4	ND	
RUH 5875	0.24	± 0.03	0.35	± 0.06	0.22	± 0.02	0.40	± 0.02	200.10	± 15.43	ND	210.10	± 11.1	ND	
AYE	0.24	± 0.07	0.42	± 0.01	0.24	± 0.04	0.34	± 0.01	155.30	± 3.45	ND	178.80	± 5.1	ND	
ACICU	0.32	± 0.01	0.46	± 0.03	0.31	± 0.02	0.40	± 0.05	90.70	± 2.58	ND	126.00	± 6.5	ND	
50C	0.11	± 0.01	0.41	± 0.01	0.13	± 0.01	0.49	± 0.01	119.90	± 5.00	ND	136.00	± 8.5	ND	
A37	0.30	± 0.09	0.41	± 0.03	0.21	± 0.03	0.37	± 0.03	122.70	± 6.54	ND	141.11	± 3.4	ND	
A60	0.33	± 0.01	0.44	± 0.04	0.31	± 0.03	0.37	± 0.01	139.70	± 11.63	ND	160.66	± 4.4	ND	
A287	0.34	± 0.07	0.36	± 0.03	0.33	± 0.02	0.40	± 0.03	138.00	± 7.95	ND	158.70	± 4.2	ND	
A369	0.36	± 0.01	0.35	± 0.02	0.28	± 0.01	0.32	± 0.02	216.60	± 3.62	ND	249.09	± 16.2	ND	
A371	0.23	+ 0.04	0.46	+ 0.04	0.16	+ 0.02	0.38	+ 0.03	189.90	+ 5 44	ND	113.00	+ 2 5	ND	
A372	0.25	+ 0.04	0.33	+ 0.01	0.22	+ 0.02	0.30	+ 0.07	102.90	+ 4.80	ND	118 30	+ 4 1	ND	
A 374	0.37	± 0.01 + 0.05	0.55	± 0.01 + 0.03	0.22	± 0.02 + 0.01	0.37	± 0.07 + 0.03	42 20	+ 9.42	ND	48 50	+ 6.1	ND	
A376	0.29	± 0.03 + 0.02	0.11	± 0.03 ± 0.03	0.24	± 0.01 + 0.01	0.36	± 0.05 ± 0.06	153.90	+ 2.81	ND	178 90	± 5.1	ND	
A377	0.29	± 0.02 + 0.01	0.39	± 0.03 + 0.02	0.25	± 0.01 + 0.02	0.35	± 0.00 ± 0.02	155.10	+ 3.16	ND	138.10	+ 122	ND	
A 380	0.19	± 0.01 + 0.05	0.39	± 0.02 + 0.01	0.19	± 0.02 + 0.01	0.35	± 0.02 + 0.03	120.10	+ 4 64	ND	287.60	+ 27.1	ND	
A 384	0.19	± 0.05 ± 0.01	0.52	± 0.01 ± 0.01	0.15	± 0.01 + 0.04	0.33	± 0.03 ± 0.03	250.10	+ 18.01	ND	137.20	± 27.1 + 13.4	ND	
A386	0.17	± 0.01 ± 0.03	0.32	± 0.01 ± 0.01	0.15	± 0.04 + 0.01	0.33	± 0.03 ± 0.02	119.30	± 18.01 + 1.87	ND	89.80	+ 14.6	ND	
A387	0.17	± 0.03 ± 0.07	0.57	± 0.01 ± 0.04	0.15	± 0.01 ± 0.02	0.33	± 0.02 ± 0.03	78 10	+ 2.06	ND	128.00	± 7.0	ND	
A388	0.25	± 0.07 ± 0.02	0.30	± 0.04	0.18	± 0.02 ± 0.01	0.32	± 0.03 ± 0.02	112 10	± 2.90 ± 6.74	ND	125.00	+ 176	ND	
A380	0.16	± 0.02 ± 0.03	0.40	± 0.01 ± 0.01	0.16	± 0.01 ± 0.06	0.52	± 0.02 ± 0.05	112.10	± 0.74 ± 3.56	ND	255 50	± 17.0 ± 17.2	ND	
A 200	0.10	± 0.03	0.35	± 0.01	0.10	± 0.00	0.30	± 0.03	222.20	± 3.50 ± 12.50	ND	202.10	± 17.2	ND	
A 202	0.09	± 0.01	0.55	± 0.02	0.15	± 0.01	0.32	± 0.03	175 70	± 13.50 ± 20.54	ND	202.10	± 0.9 ± 10.2	ND	
A392	0.25	± 0.01	0.45	± 0.01	0.10	± 0.01	0.42	± 0.01	107.50	± 20.34		171.50	± 19.2		
A397	0.25	± 0.00	0.41	± 0.03	0.51	± 0.04	0.57	± 0.02	210.70	± 12.07		1/1.50	± 0.9		
A399	0.20	± 0.01	0.47	± 0.03	0.24	± 0.03	0.33	± 0.02	219.70	± 12.19		190.80	± 14.5		
A402	0.23	± 0.01	0.35	± 0.02	0.17	± 0.04	0.32	± 0.02	149.10	± 8.18		255.50	± 8.6	ND	
A404	0.31	± 0.02	0.39	± 0.03	0.22	± 0.02	0.34	± 0.03	180.50	± 12.57	ND	260.70	± 4.3	ND	
A410	0.21	± 0.01	0.38	± 0.02	0.22	± 0.05	0.33	± 0.03	222.20	± 13.00		165.40	± 1.2		
A411	0.20	± 0.02	0.37	± 0.01	0.16	± 0.03	0.37	± 0.02	226.70	± 5.72	ND	105.70	± 4.5	ND	
A414	0.22	± 0.03	0.32	± 0.03	0.17	± 0.02	0.29	± 0.06	143.80	± 13.72	ND	186.10	± 5.9	ND	
A416	0.14	± 0.02	0.41	± 0.04	0.16	± 0.02	0.39	± 0.04	91.90	± 5.72	ND	147.50	± 6.6	ND	
A424	0.17	± 0.01	0.28	± 0.01	0.23	± 0.01	0.29	± 0.02	161.80	± 16.16	ND	119.70	± 1.1	ND	
A429	0.27	± 0.01	0.39	± 0.01	0.21	± 0.03	0.35	± 0.02	128.30	± 6.13	ND	97.90	± 8.1	ND	
A430	0.36	± 0.03	0.33	± 0.02	0.30	± 0.03	0.32	± 0.03	104.10	± 3.24	ND	224.90	± 4.6	ND	

TABLE S4 Growth yields and relative siderophore production at 24 and 48 h in a collection of 58 *A*. *baumannii* strains cultivated in microtiter plates in M9-DIP supplemented or not with 100 μ M FeCl₃.

A435	0.41	± 0.02	0.42	$\pm \ 0.03$	0.37	± 0.02	0.38	± 0.02	85.10	± 1.35	ND	108.40	± 10.7	ND
A436	0.32	± 0.01	0.40	$\pm \ 0.04$	0.24	$\pm \ 0.03$	0.36	± 0.01	195.60	\pm 3.24	ND	116.50	± 7.4	ND
A437	0.12	± 0.01	0.28	$\pm \ 0.02$	0.12	$\pm \ 0.03$	0.39	± 0.03	94.30	± 4.89	ND	96.10	± 6.1	ND
A438	0.27	± 0.02	0.37	$\pm \ 0.02$	0.21	$\pm \ 0.04$	0.35	± 0.02	101.30	± 4.73	ND	165.40	± 2.0	ND
A440	0.13	± 0.02	0.29	$\pm \ 0.03$	0.15	± 0.02	0.31	± 0.02	40.10	± 1.27	ND	80.30	± 2.0	ND
A443	0.11	± 0.01	0.30	$\pm \ 0.05$	0.12	$\pm \ 0.06$	0.29	± 0.01	143.80	\pm 5.77	ND	182.50	± 3.3	ND
A451	0.10	± 0.02	0.47	$\pm \ 0.01$	0.14	± 0.06	0.46	± 0.01	69.80	± 3.82	ND	89.00	± 14.7	ND
A453	0.12	± 0.10	0.16	± 0.02	0.12	± 0.02	0.24	± 0.03	158.70	± 7.65	ND	182.51	± 3.1	ND
A457	0.28	± 0.01	0.44	$\pm \ 0.03$	0.33	$\pm \ 0.03$	0.40	± 0.03	240.0	\pm 8.27	ND	276.00	± 10.2	ND
A458	0.20	± 0.03	0.41	$\pm \ 0.01$	0.18	$\pm \ 0.03$	0.39	± 0.02	184.9	± 4.59	ND	212.64	$\pm \ 35.6$	ND
A461	0.29	± 0.01	0.44	$\pm \ 0.01$	0.25	$\pm \ 0.01$	0.41	± 0.01	233.8	± 1.70	ND	268.87	± 3.6	ND
A462	0.21	± 0.02	0.30	$\pm \ 0.01$	0.16	$\pm \ 0.03$	0.32	± 0.03	156.3	± 1.46	ND	179.75	± 3.6	ND
A464	0.30	± 0.01	0.33	$\pm \ 0.01$	0.23	$\pm \ 0.01$	0.31	± 0.01	155.8	± 2.94	ND	179.17	± 2.7	ND
A468	0.31	± 0.03	0.33	$\pm \ 0.03$	0.26	± 0.02	0.26	± 0.01	167.0	± 10.47	ND	192.05	± 1.7	ND
A469	0.30	± 0.03	0.44	$\pm \ 0.03$	0.27	± 0.02	0.39	± 0.02	180.3	± 2.61	ND	207.35	± 7.9	ND
A472	0.11	± 0.04	0.42	$\pm \ 0.01$	0.13	$\pm \ 0.03$	0.40	± 0.05	151.4	± 7.31	ND	174.11	\pm 7.0	ND
A473	0.10	± 0.01	0.37	$\pm \ 0.03$	0.19	$\pm \ 0.01$	0.35	± 0.03	242.0	\pm 32.02	ND	278.30	\pm 7.3	ND
A474	0.23	± 0.02	0.33	$\pm \ 0.01$	0.22	$\pm \ 0.04$	0.29	± 0.02	108.9	± 2.55	ND	125.24	± 15.4	ND
A479	0.46	± 0.03	0.47	$\pm \ 0.01$	0.35	± 0.03	0.45	± 0.04	59.6	± 2.73	ND	68.54	± 11.1	ND
A483	0.29	± 0.05	0.49	$\pm \ 0.02$	0.26	± 0.01	0.41	± 0.05	168.3	± 2.44	ND	193.55	± 5.1	ND
A486	0.32	± 0.07	0.33	$\pm \ 0.01$	0.24	± 0.02	0.30	± 0.01	87.1	± 1.44	ND	100.17	± 6.5	ND
A491	0.19	± 0.01	0.45	$\pm \ 0.02$	0.16	± 0.01	0.39	± 0.03	241.1	\pm 7.15	ND	277.27	± 6.7	ND

^{*a*}ND, not detectable.

Strain		LD ₅₀ (0	CFU/larva	ι)	LD ₉₀ (CFU/larva)					
	24 h	48 h	72 h	96 h	24 h	48 h	72 h	96 h		
ATCC 19606 ^T	2×10 ⁸	9×10 ⁷	5×10 ⁷	4×10 ⁷	5×10 ⁸	3×10 ⁸	9×10 ⁷	7×10^{7}		
ATCC 17978	4×10^{6}	2×10 ⁶	2×10 ⁶	2×10^{6}	3×10 ⁷	7×10^{6}	5×10 ⁶	5×10 ⁶		
RUH 5875	9×10 ⁶	3×10 ⁶	2×10 ⁶	2×10^{6}	4×10^{8}	5×10 ⁷	8×10^{6}	8×10 ⁶		
AYE	6×10 ⁶	2×10 ⁶	1×10^{6}	1×10^{6}	2×10^{7}	5×10 ⁶	5×10 ⁶	5×10 ⁶		
ACICU	6×10 ⁶	3×10 ⁶	2×10 ⁶	9×10 ⁵	1×10^{7}	1×10^{7}	5×10 ⁶	5×10 ⁶		
50C	5×10^{5}	3×10 ⁵	2×10 ⁵	2×10 ⁵	1×10^{7}	1×10^{6}	8×10^{5}	8×10 ⁵		
A371	1×10 ⁵	1×10 ⁵	1×10 ⁵	1×10 ⁵	9×10 ⁵	3×10 ⁵	3×10 ⁵	3×10 ⁵		

TABLE S5 *G. mellonella* killing by selected *A. baumannii* strains at 24, 48, 72 and 96 h after inoculation.