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Topological analysis 

The theory of nonlinear dynamics established that the long-term behavior of a dynamical 

system depends on the geometry of the underlying attractor (Strogatz, 1994). Many 

different utterances in voiced sound production by vertebrates are represented by distinct 

dynamical attractors: the silent organ (a constant value) is represented by a fixed point; a 

pure tone or a harmonic stack (a periodic oscillation) are represented by a limit cycle; 

amplitude-modulated sounds are represented by a torus; and “noisy” or harsh sounds 

(nonperiodic oscillations) are represented by a chaotic attractor. All stable and unstable 

periodic orbits in the phase space of a system are geometrically arranged in a particular 

way, like many different (closed) threads entangled in a twisted skein. 

Topological methods have relatively recently been developed for the analysis of 

three-dimensional dissipative dynamical systems. Topological methods possess three 

very useful features: 1) they describe how to model the dynamics, 2) they allow 

validation of the models so developed, and 3) the topological invariants are robust under 

changes in control-parameter values (Gilmore 1998). A topological approach to the study 



of a dynamical system is based precisely on finding the geometrical arrangement of the 

periodic orbits of the system. 

The topological structure of a system is identified by a set of integer invariants. 

One of the truly remarkable results of the topological-analysis procedure is that these 

integer invariants can be extracted from the time series. These integers can be used to 

determine whether or not two dynamical systems are equivalent. In particular, they can 

determine whether a model developed from time-series data is an accurate representation 

of a physical system. Conversely, these integers can be used to provide a mathematical 

model for the dynamical mechanisms that generated the experimental data (Gilmore 

1998). 

There is a topological invariant, the Linking Number (LN), which describes how 

two closed curves (periodic orbits) are linked or intertwined. The LN is an integer and it 

remains invariant as the orbits are deformed, as long as the deformation does not involve 

the orbits crossing through each other. Two different periodic orbits can never intersect, 

for that would violate the uniqueness theorem: the intersection point would have two 

possible futures. The only exception is an intersection on a fixed point, where the velocity 

is zero. 

The orbits in a specific bifurcation are constrained to have a specific set of 

topological indices. Any departure from these values should cast serious doubt on the 

identity of the bifurcation. Consider a period doubling bifurcation: a stable limit cycle 

abruptly becomes unstable and at the same time a related, stable limit cycle is created that 

has twice the period (Fig. S1A). Just before the bifurcation, the organization of the phase 



space in the vicinity of the period-1 orbit (i.e. the stable manifold) takes the form of a 

Moebius band, such that any initial condition on one side of the limit cycle will be on the 

other side after one period, alternatively switching sides as the trajectory asymptotically 

approaches the limit cycle. This Moebius-like geometrical organization is preserved at 

the moment of the bifurcation, such that the newly created period-2 orbit and the now 

unstable period-1 orbit are intertwined in a very particular way: the period-2 orbit should 

be twisted around the period-1 orbit an odd number of half-turns. This leads to an odd 

LN. The orbits in Fig. S1C, D are not topologically related as it should be for a true 

period doubling, and indeed their LNs are not odd, but even in both cases. 

Fig. S2 shows a more complicated set of orbits in a period doubling bifurcation 

p1p2. These schematic orbits are representing the reconstruction from the time series 

x(t) through a time-delayed embedding. Note the Moebius-like organization of the 

period-2 orbit around the period-1 orbit. Study of even more complicated orbits (Figs. 2 

and 3 in the main text) needs 3D visualization tools, or computational implementation of 

an algorithm as described below. 

The LN of two orbits embedded in a three-dimensional phase space can be 

computed through the following algorithm (Gilmore 1998): 

1. Project the orbits A and B onto a two-dimensional subspace. This can be 

done simply by plotting any two variables of the phase space or embedding (x(t) 

vs. x(t-τ) in our case) for both orbits. 



2. Determine the sign of every crossing between orbit A and orbit B. Right-

handed crossings are assigned a value +1, left-handed crossings are assigned a 

value -1. 

3. The linking number of A and B, LN(A,B), is half the sum of the signed 

crossings between A and B. 

In general a candidate for period doubling bifurcation can be discarded by an even LN, 

but the LN alone is not sufficient for proving a period doubling bifurcation of arbitrary 

period and thus one has to compute a more detailed set of indices known as the Relative 

Rotation Rates (RRR) (Gilmore 1998, Solari and Gilmore 1988). However, in the 

particular case of a period doubling bifurcation between periods 1 and 2, the topological 

organization of the orbits is completely described by the LN, and there is no need to 

resort to the RRR (Solari and Gilmore 1988). As all candidates in this study were period 

doubling bifurcation between periods 1 and 2, in our case, a presumed period doubling 

bifurcation could be either discarded or proved by looking only at the LN. An odd LN is 

strongly supportive of a period doubling bifurcation, while the bifurcation can be 

discarded if the LN is even. 

Close-returns (CR) plots are a powerful tool for finding periodic orbits (either 

stable or unstable) in a time series. For a time series x(t), the CR plot is based on the 

observation that the difference |x(t) – x(t+T)| remains smaller than a given threshold ε 

when x(t) is near a periodic orbit of period T (Gilmore, 1998). The CR plot contains a 

mesh plot as a function of time t and period T, where the pixel (t,T) is plotted black when 

|x(t) – x(t+T)| < ε. A periodic orbit appears as a set of parallel, continuous, horizontal line 



segments in the CR plot. The period of the orbit is reflected in the value of the lowest 

segment. Additional line segments always appear at multiples of the lowest value—a 

signal that is periodic at T is also periodic at mT. An abrupt end of a segment while a 

harmonically related segment continues (i.e. a multiple) is indicative of a subharmonic 

bifurcation. In a period doubling bifurcation every other segment disappears (Fig. S2C, 

black arrowhead). 
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FIGURE LEGENDS 

Figure S1. Linking number and signed crossings. 

(A) Schematic drawing of a period doubling bifurcation in phase space. Before the 

bifurcation (left) a stable limit cycle is present, corresponding to a periodic time series 

with frequency f. After the bifurcation (right) the original limit cycle has become unstable 

(dashed line) and the system abandons it for a new stable solution: a related limit cycle 

with frequency f/2 (solid line). The signed crossings count is -2, so the linking number for 

these two orbits is LN = -1. A period doubling bifurcation has an odd LN (either positive 

or negative). (B) Definition of signed crossings. A right-handed crossing in the direction 

of the flow is positive, while a left-handed crossing is negative. (C) Two orbits p1 and p2 



very similar to the orbits in (A), that nonetheless are not related through a period 

doubling bifurcation. Compare the crossing marked with the grey arrow. Note that the 

orbits in this case can be “disentagled” from each other. The count for signed crossings is 

zero; LN = 0 and so a period doubling is discarded. (D) A more complicated pair or 

orbits. Signed crossings +4, which gives LN = +2, so a period doubling is discarded.  

 

 



Figure S2. The orbits of a period doubling bifurcation p1p2 in phase-space 

embedding. (A) The two orbits reconstructed by embedding the original time series x(t) 

in a three-dimensional phase space [x(t), x(t- τ), x(t-2 τ)]. Very near the bifurcation, orbit 

p2 (solid line) is close to orbit p1 (dashed line) and it lies on the edge of a Moebius band 

around p1. All crossings between the orbits (solid-dashed intersections, not shown for 

visual clarity, six total) are positive, and then LN = +3. (B) Segments of the original time 

series: p1 (dashed) and p2 (solid), corresponding to the open arrowheads in (C). Segment 

p1 is plotted twice for comparison with each half of p2. The slight differences explain the 

longer period of p2 (exactly twice that of p1). (C) Close-returns plot. The period of a 

signal at any given time is read from the value of the lowest horizontal line segment at 

that time. In a period doubling bifurcation (black arrowhead) the period abruptly jumps to 

twice the value before. 

 

 


