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Supplementary Methods

Models for the simulation of fragmentation

Nebulization. Already early reports on results from RNA-Seq experiments based on nebulization observed reads accumulating at
the 5’-end of transcripts and around the center, especially of shorter transcript forms (28). These observations coincide well with
breakpoint distributions obtained by a theoretical model of mechanical breakage that considers molecules as rigid stiffs (24), in which
breakpoints recursively accumulate around the midpoint of iteratively broken fragments. According to this model, the average expected
fragment size depends on the length of the nebulized DNA molecule: comparatively short molecules accumulate higher breaking
probabilities during the time it takes to fragment the longer molecules in the transcript population.

In the light of these preliminary studies, we simulate nebulization by an iterative two-step process: first, a random orientation of the
molecule in the shear field—i.e., the point (q) where the shearing stress is applied—is determined by random sampling under a
Gaussian function centered at a molecule's midpoint. Subsequently, the breaking probability ps is deduced from the exponential:

ppr=1- exp-((min(q, len-q)+ c)/ \)M, (1)

where len is the molecule length, A is a parameter that describes the limiting size below which molecules are very unlikely broken by the
shearing field; M is a parameter describing the force of the shear field and determines the steepness of the slope in the resulting
fragment size distribution; c finally is a constant that adjusts p» to be 0.5 for a size exactly between A (p» —0) and 2\ (p» —1). In our
model, a Bernoulli trial on p, determines whether a simulated break incurs at a given position. Recursive breaking continues until
thermodynamics equilibrium as assumed by convergence of the fraction of breaks per time unit in the library falling below a given
threshold (t=1%).

Hydprolysis. Frequencies f(d) of fragment sizes d produced by a uniform random fragmentation process have demonstrated to fall
along Weibull distributions (8,n), if the fragmentation thermodynamics depends on the molecule size (25):

Ad)=8/m (d/n)°" exp—(d/m)° (2)



Scale parameter 1) represents the intensity of fragmentation (i.e., breaks per unit length), and—as a determinant of the mean expected
fragment size—is assumed to be constant across molecules of different lengths for fragmentation protocols where the number of
produced fragments depends on the molecule length. Shape parameter 8 reflects the geometric relation in which random fragmentation
is breaking a molecule (e.g., 8=1 corresponds to uniform fragmentation on the linear chain of nucleotides, 6=2 splits uniformly the
surface, and 8=3 the volume, etc.).

Employing empirical data from spike-in sequences, we evaluated the fitting obtained by weighted subsampling from Weibull
distributions with varying shape parameters. Weights for the subsampling (Fig. 2B, solid line) were derived by separating the
characteristics of the combined Weibull distributions before filtering (dashed line in Fig. 2B and 2C) from the observed insert size
distribution (Fig. 2B, dashed-dotted line). The quality of fit was measured as the p-value computed by a Kolgomorov-Smirnov test,
comparing the in silico produced insert size distribution (Fig.2A, dashed lines) for each of the spike-in sequences under investigation
with its experimental couterpart (Fig.2A, solid lines) under the null hypothesis that both samples were drawn from the same
distribution. By this, we empirically found that the observed differences can be qualitatively reproduced under a constant decay rate
(n=200nt), when shape parameter 8 depends logarithmically on the molecule length (Supplementary Fig.4).

In our uniform random fragmentation model, we use a 3-step algorithm to tokenize a molecule; first, geometry 8 and the number n of
fragments that are obtained from the molecule are determined. We found empirically that parameter 0 depends logarithmically on /en,
the length of the molecule that is fragmented d=log(len). The number of fragments produced from a specific RNA molecule is determined
by n=len/E(dmax), where E(dmax) is the expectancy of the most abundant fragment size, computed from 1 and the gamma-function I'" of &:

E(dmax)=mI'(1/0 + 1) (3)

Second, (n-1) breakpoints are sampled uniformly from the interval [0;1], resulting in relative length fractions xj, ....x, for all n fragments.
Third, relative fragment sizes x; are transformed from unit space to sizes d; that follow a Weibull distribution of shape 0 by:

di = <%)3 4)



where C= (len / Z(x,-l/ 6))_6 is a constant of the transformation to ensure that the sizes of the n fragments sum up exactly to the given

molecule length len. Latter transformation—other than the original model (25)—produces a slightly distorted Weibull distribution for
the sizes d;, however the deviation is sufficiently small to be neglected in our applications. The original work (25) also shows that the
theory on fragment sizes falling along Weibull distributions holds for di<<len, which in RNA-Seq is not always satisfied because
transcripts with lengths close to E(dmax) can exist.

A model for simulated reverse transcription
Our algorithm determines start point and extension separately for first and for second strand synthesis.

1. During first strand synthesis, poly-dT primers induce priming events in the poly-A tail, whereas random primers provoke
successful initiation events along the entire molecule, and anchored primers trigger exactly one priming event at the 3-end of the
respective fragment. In sequencing protocols without sequence-specific biases, each priming event is assigned a random location
uniformly sampled along the corresponding stretch. Optionally, start points of first strand synthesis are determined by importance
sampling according to weights of an optional PWM capturing sequence-biases (7,8).

2. The point where second strand synthesis initiates is simulated by the length of the first DNA strand, which can be between RTnin
and RTmax nucleotides, but maximally the distance of the first strand synthesis priming event from the 5’-end of the RNA template. The
point of priming second strand synthesis in the presence of sequence biases is drawn from a distribution according to the PWM
capturing the bias, or from a uniform distribution otherwise.

In the case of multiple priming events with random primers, several enzymes concurrently transcribe parts of the RNA molecule, and
collisions with downstream DNA-RNA hybrids are resolved by displacement according to a Bernoulli trial. Standard literature about
molecular techniques (21) provides values for RTnin~500nt and for RTmax ~5,000nt, under which the model reproduces fairly well
experimental characteristics (Results).

The Model for the simulated PCR Amplification



The efficiency of PCR amplification is either specified by an universal success rate p, or, by a normal distribution p=f(meancc,SDqc)
parameterized to capture GC preferential biases (default meancc=0.5 and SDc=0.1). Given p, the number of copies produced from a

certain fragment is determined by random sampling under the cumulative binomial:
(31
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with § denoting the PCR cycle and N the number of molecules. As default, we assume 15 PCR cycles ($=15), and sample randomly the
number of duplicates yielded by PCR amplification under the corresponding probability distribution P15(N) for all possible values of
N=[1;215]. The recursion terminates by

Py(N)=0
Pl(N):{lzNzl

0:else
A quality-based model for Illumina Sequencing Errors

General models for simulating sequencing errors have been proposed for the Roche and the [llumina platform (22). Herein, we
extend the proposed Illumina model to take into account quality-dependend crosstalk, i.e., the preference of substitution according to a
certain quality value assigned (Supplementary Fig.2):

1. A quality value is randomly drawn from an empirical distribution, depending exclusively on the position within the read, i.e, the
[llumina sequencing cycle. This correlation varies even between different sequencing chemistries of the [llumina platform as can
be seen by comparison of 35nt reads (9) from 2008 to the 76nt reads (29) produced in 2010 (grey charts in Supplementary Fig.2
A and B).

2. According to the error probability intrinsic to the quality value, a Bernoulli trial decides whether the genomic base is mutated in
the read sequence.

3. Our in-depth study of substitution rates reveals that preferences of miss-called nucleotides correlate stronger with quality values
than with the read position (Supplementary Fig.2C). Therefore, we implemented in our model a first order Markov process that
determines the mutated nucleotide based on the quality values of a read.



A general model for transcript expression in a cell population

Although gene expression generally follows Zipf’s law, it also has been noted that in lowly expressed genes this simple model does not fit
and a gradually increasing deviation from the log-log linear regression towards the least abundant genes is observed (Supplementary
Fig.3). For all of the investigated datasets, this deviation decays even faster than exponential, and from the analyzed data we deduced by
non-linear fitting a general correlation between a gene’s expression rank x and its normalized expression level y

z (22
y e yogjkel‘pa(b) (6)

)

where yy is the—expression level of the most abundant gene, k is the exponent of the underlying Zipf's law which governs the slope of
the log-log plot. In the experiments we investigated, this coefficient varied between -0.6 and -0.9 (Supplementary Tab.2). The
parameters a and b control the exponential decay, and we empirically found that a=b~10% in our datasets. A previous study on gene
expression derived from ESTs and SAGE (serial analysis of gene expression) tags demonstrated that the similarity between observed
distributions and Zipf’s law gets stronger when accumulating more data (2), which translates to our model as by changing parameters a
and b.

In order to simulate realistic transcript expression levels as observed in cellular transcriptomes, we implemented a transcriptome
simulator into the Flux Simulator pipeline (Methods). For the simulation, we modified Zipf's law that has been reported earlier as a basic
rule for expressed genes (2,5) to observations of from RNA-Seq experiments (Supplementary Fig.3).

To estimate realistic ranges for the parameters of the model, we have compared theoretic results with previously published reports on
the cellular distribution of gene expression levels, three of these are in human tissues (36-38), and one is in mouse (36). These
traditional expression studies commonly cluster the cellular RNA complement into three domains—i.e., “super-prevalent”,
“intermediate” and “complex/rare” transcripts—and in order to distinguish between these classes we assumed a concentration of ~105
RNA molecules per cell (11) and adopted the thresholds of >500 copies per cell for “super-prevalent” transcripts and of >15 copies/cell
for “intermediate” transcripts (38).

Supplementary Table 2 summarizes the comparison of values reported in the literature with our transcriptome simulations. Note that
while the comparison is sensitive to the thresholds that we enforce to separate the different fractions, with a suitable range of



parameters, Supplementary Formula 6 is able to reproduce quite appropriately the spectrum of expression profiles observed in
mammalian cells.

Models for variation in transcription start sites and poly-A tails

Literature knows different types of transcription start site distributions depending on the specific promoter of a gene (39), however, a
major class of genes exhibits an about exponential probability peak centered at the main transcription start site (40). Motivated by
these observations we realized variation in transcription starts as exponentially distributed around the annotated start site (default
mean 10nt)—obviously in an abstraction of the processes that determine the formation of RNA-polymerase initiation complexes, such
as transcription factor concentrations, promoter-configuration and —-occupancy, etc.

During poly-adenylation in the nucleus it is generally assumed that about 200-250 adenine residues are added to the primary transcript
sequence (41). However, accurate estimates about the nature of poly-A tail sizes are currently still unavailable. Due to its flexibility, we
therefore have choosen a Weibull-approximation of the normal distribution (shape=2, scale=300) to sample random lengths of poly-A
tails.

Description of experimental datasets employed in the study

The paired-end dataset containing the spike-in control sequences (GSE20846) and the yeast dataset (GSE11209) have been obtained
from the Gene Expression Omnibus database, the murine data (SRA001030) from the National Center for Biotechnology Information’s
(NCBI) short-read archive, the huan datasets from the European Nucleotide Archive (ERA000183), and the cress dataset from GenBank
by accession numbers EH795234 through EH995233 and EL000001 through EL341852.

All these RNA-Seq experiments have targeted the poly-A+ RNAome, but substantially differ in the following points (Supplementary
Tab.1): the mouse and the spike-in dataset has been produced by a protocol using exclusively random priming for first strand synthesis
of RT, whereas the cress and the yeast dataset involved poly-dT primers. In the mouse/spike-in experiment RNA was hydrolzed prior to
RT, in the cress experiment the cDNA library has been nebulized or fragmented by DNAsel in the yeast experiment, respectively. For the
mouse and spike-in dataset 200nt +/- 25nt fragments, for the yeast experiment 100-300nt fragments have been selected from the cDNA



library before sequencing, wehereas the cress experiment did not involve any size selection step. The mouse, spike-in, and the yeast
dataset have been sequenced on the Illumina platform, whereas cress reads were obtained from a Roche 454 pyrosequencer
(Supplementary Tab.1).



Supplementary Figure 1: Mapping directionality of reads with respect to the reference transcript in sequencing-by-synthesis
technologies. Arrows mark the both of the four possible ends in double stranded DNA molecules which can serve as templates for the
sequencing-by-synthesis reaction, giving rise in this cartoon to the read sequences ATTCA.. and GGAGG... respectively. One of the
possible reads naturally is a subsequence of the transcript and the other possible read is reverse-complemented compared to the
transcript’s sequence, regardless of which of the two cDNA strands represents the orientation of the underlying transcript (both
possible scenarios are depicted as A and B). By rotational symmetry of the ends that can be sequenced, sense reads always represent the
upstream end of the underlying RNA fragment, whereas anti-sense reads stem from downstream ends.
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Supplementary Figure 2: [llumina read error models.
sequencing chemistries (35nt respectively 76nt long) to the corresponding genomic reference have been clustered according to the observed
nucleotide transition (i.e., the crosstalk). Panel A and B depict these transition probabilities (colored curves, scale on the left axis) as well as the
median quality level (grey chart, right axis) along the read sequence (x-axis). For each of the crosstalk transition types we measured the
correlation of the observed rate with the position in the read (i.e., cycle number) and with the quality value. Panel C shows the scatter plot
between the rate-position and the rate-quality correlation coefficients, pinpointing quality values as a determinant of the transition rate by
strongly polarized correlation coefficient values (>0.5 and <-0.5).
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Supplementary Figure 3: Expression profiles
observed in RNA-Seq experiments. The curves
show the log-log behaviour of transcript expression
in RNA-Seq experiments conducted on cellular
transcriptomes of the species M.musculus (blue),
A.thaliana (green) and S.cerevisiae (red). Expression
values for every gene in a corresponding reference
annotation (i.e, the murine RefSeq, the TAIR9
annotation of cress, and the SGD yeast annotation)
have been estimated by the number of reads
mapping to it, and expression levels have been
ranked from high to low (x-axis). Although target
cells and RNA-Seq experiment protocols differ
substantially, all datasets show highly similar
characteristics in their transcript abundance
distribution: the nature of Zipf's Law underlying
gene expression can be noted by the largely linear
behaviour in logarithmic scale. However, especially
for lowly abundant forms, an exponential decay is
notable.
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Supplementary Figure 4: Evaluation of Weibull parameters to
fit experimentally observed insert size distributions. Within the
parameter space of n=[150;250] for scale and 8=[1.0;5.0] for shape,
91,125 combinations of different Weibull distributions were
computed, representing the theoretic fragment sizes of the spike-in
sequences VATG, OBF5 and Lambdaclonel-1 before filtering. For
each tuple of simulated distributions, the combined probability
distribution is employed for correction of experimentally observed
insert size frequencies. The corrected frequencies subsequently are
applied as filtering weights to produce in silico predictions, which
are compared to the experimental results by p-values computed by
Kolgomorov-Smirnov tests, for each of the spike-in sequences
separately. The boxplot shows the distribution of these p-values
grouped in bins of shape parameters used to simulate the underlying
Weibull distribution (i.e., [1.0;2.0], [2.5;3.5], [4.0; 5.0]) for VATG
(green), OBF5 (blue) and Lambdaclonel-1 (red). The quality of the
fit is best, i.e. p-values for rejecting the null hypothesis of simulated
and experimental data following the same distribution are closest to
1, with simulated Weibull curves of shape [1.0;2.0] for short
transcripts as VATG (376nt), shape [2.5;3.5] for messenger-sized
RNAs as OBF5 (1,429nt), and shape [4.0;5.0] for very long
transcripts as Lambdaclonel-1 (11,934nt).
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Supplementary Figure 5: Positional biases of fragments in the Lambdaclonel-1 spike-in control. The density scatter plot shows the
concentration of fragment centers along the Lambdaclonel-1 control sequence (x-axis), segregated by their lengths (y-axis). The top curve
summarizes the relative GC content in windows corresponding to the average fragment size (192nt) centered at the corresponding position.
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Supplementary Figure 6: GC content histograms
before and after PCR amplification. The distribution of
GC content in fragments of the simulated primary library
(i.e., before PCR-amplification, green curve) differs
markedly from the distribution found by experimental
results (blue curve). The PCR model in the Flux Simulator
assumes a Gaussian distribution (mean=50% GC content
and standard deviation 10% GC content) for the
amplification efficiency based on a transcript’s sequence
composition. Applying the in silico model changes the
composition of fragments in the final library (red curve) and
shifts the original GC distribution (green curve) towards the
distribution deduced from the experiment (blue curve).



Supplementary Figure 7: GC content and fragment bias of additional spike-in sequences. GC content of the control sequences AGP (top-
left panel), Apetala (top-right), EPR (bottom-left) and Lambdaclone23-2 (bottom-right) has been measured along each transcript considering
a window of the same size as the average fragment length (192nt). To measure coverage, the number of fragments that include a
position is considered. The left panel shows for each of the spike-in sequences the correlation between positions binned by their GC content
and coverage, the right panel depicts the normalized coverage (red curve) and GC content (blue curve) along the transcript body.
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Supplementary Figure 8: Prediction of sequence
biases by position weight matrices. The top panels
show points where first strand synthesis initiated for
the OBF5 (A) and the Lambdaclonel-1 (B) control
sequences. Sequence biases observed in the
experiment have been collected in a position weight
matrix, which subsequently was employed to score
every position of a sequence (middle panels). The
bottom panels summarize the correlation between
observation and prediction in log-scale. Although the
highest peaks of the predicted profiles (yellow bars
in top panels) coincide fairly often with peak
observations from experimental data, but
probabilities derived from position weight matrices
correlate only moderately with the observed
frequencies (Pearson coefficient 0.46 and 0.24,
respectively).



60

S —
2B ,
B !
o |
o
—
o £
<
() ()
O
S ES
=) @ _—
o ™ ©
@) X
T O
O O | ——
8 o ™
o
oo o U cpoocccccodoc]eccccccchee
o g 1 == :
ooco'ooocooooccooloocooooorv-‘-rvccooooccoooo-co
o |
o 9_ —
) T T T T
0 300 600 900 1200 + - -+ + + - -
Position Peak types (upstream,downstream)

Supplementary Figure 9: Mapping directionality of stacked reads reveals insert size distribution. (A) Reads mapped to the spike-
in control sequences are classified according to their alignment directionality into sense (symbol “+”) and anti-sense (“-“). Read stacks
are identified by 18 or more reads aligning at the same position, and the distance of each read stack to the next downstream stack in the

o «

transcript (i.e., the next “+” and the next

stack, if present) is determined. (B) The boxplot of these distance distributions shows that

exclusively distances between “+/-“ read stacks describe a distribution that falls largely within the fragment size range of the
experiment (red bars marking Q1=167nt and Q3=210nt of the fragment size distribution determined by read pairing).
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Supplementary Table 1: Summary of reference datasets. The table summarizes experimental data sets employed in our studies.

Species Tissue Platform RT Fragmentat Size Selection Read Length Mappings
ion
Spike-in (29) - [llumina  random hydrolysis 200nt+25nt 76ntx 2 530,995
H.sapiens FRT (17) placenta llumina  anchored hydrolysis (> adapter) 37ntx 2 9,184,734
H.sapiens STD (17) placenta llumina  anchored hydrolysis (> adapter) 37ntx 2 9,529,116
H.sapiens ! 16 tissues  Illumina  anchored hydrolysis mean 350nt 100nt 204,768,395
M.musculus (11) liver [llumina  random hydrolysis 200nt+25nt 25nt 31,577,110
A.thaliana (28) seedling Roche454 poly-dT  nebulization - 94nt+20nt 541,852
S.cerevisiae (9) - Mlumina  poly-dT ~ DNasel 100nt-300nt 35nt 14,125,182

' ERP000546 in the European Nucleotide Archive

18



Supplementary Table 2: Evaluation of the transcriptome simulator. We compared expression values yielded by the transcriptome
simulation implemented in the Flux Simulator to literature values for human and murine cell types (rows). For super-prevalent,
intermediate and complex/rare transcripts, the number of distinct spliceforms (column “transcripts”) and the respective fraction of RNA
mass they constitute (column “%RNA”) are presented. Note that the resolution of abundance classification is general and often not
clearly delineated, which especially affects the sensitive threshold that separates "super-prevalent” from "intermediate" forms.

Reference cell type expressed super-prevalent intermediate complex/rare

transcripts | transcripts %RNA transcripts %RNA transcripts %RNA

typical mammalian cell (37) 10,000 - 30,000 NA NA NA

human fibroblast (42) 12,000 NA NA 11,000 ~301

typical somatic cell (38) 16,000 -22,000 10-15 10-20 1,000 - 2,000 40- 45 15,000 - 20,000 40 - 451

Simulation? (EnsEMBL hg18) 14,457 - 34,230 4-18 3-11 985 - 2,528 39-58 13,547 - 31,684 38-51

typical murine cell (36) 10,500 - 22,000 5-10 >20% 500 - 2,000 40 - 60 10,000 - 20,000 <20-45

Simulation3 (EnsEmbl mm9) 11,295 - 28,092 8-22  7%-24% 1,188 - 1,457 46 - 57 9,551 - 26,934 19 - 43

! Wheras Williams (42) reports transcripts with <14 copies/cell as “complex/rare”, the fraction specified by Martin and Pardee (38) refers
to transcripts with < 15 copies/cell. * Parameter space k=(-0.6) to (-0.7), y;=10*, a=b=9,000 — 25,000. * Parameter space k=(-0.7) to (-0.8),
y=10", a=b=5,500 — 15,500.
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Supplementary Table 3: Flux Simulator parameters employed for the simulations. The table shows name-value pairs for all parameters
to produce the simulation results presented in Fig. 6. Default parameter values are in italics.

M.musculus H.sapiens S.cerevisiae A.thaliana

NB_MOLECULES 5,000,000 NB_MOLECULES 5,000,000 NB_MOLECULES 5,000,000 NB_MOLECULES 5,000,000
TSS_MEAN 25 TSS_MEAN 50 TSS_MEAN 25 TSS_MEAN 100
POLYA _SCALE 300 POLYA_SCALE NaN POLYA_SCALE 80 POLYA_SCALE 200
POLYA _SHAPE 2 POLYA_SHAPE NaN POLYA_SHAPE 2 POLYA_SHAPE 1.5
FRAG_SUBSTRATE RNA FRAG_SUBSTRATE RNA FRAG_SUBSTRATE DNA FRAG_SUBSTRATE DNA
FRAG_METHOD UR FRAG_METHOD UR FRAG_METHOD EZ FRAG_METHOD NB
FRAG _UR _ETA 170 FRAG_UR_ETA 350 FRAG_EZ MOTIF DNAsel.pwm FRAG_NB_LAMBDA 600
FRAG_UR _DO 1 FRAG_UR _DO 1 FRAG_NB_M 5
RTRANSCRIPTION YES RTRANSCRIPTION YES RTRANSCRIPTION YES RTRANSCRIPTION YES
RT_PRIMER RH RT_PRIMER RH RT_PRIMER PDT RT_PRIMER PDT
RT_LOSSLESS YES RT_LOSSLESS YES RT_LOSSLESS YES RT_LOSSLESS YES
RT_MIN 500 RT_MIN 500 RT_MIN 500 RT_MIN 400
RT_MAX 5,500 RT_MAX 5,600 RT_MAX 2,500 RT_MAX 2,600
GC_MEAN 0.5 GC_MEAN NaN GC_MEAN 0.5 PCR_ROUNDS 13
FILTERING YES PCR_PROBABILITY 0.05 FILTERING YES FILTERING NO
SIZE_SAMPLING MH FILTERING NO SIZE_SAMPLING MH

READ_NUMBER 15,000,000 READ_NUMBER 150,000,000 READ_NUMBER 1,000,000 READ_NUMBER 2,000,000
READ_LENGTH 75 READ_LENGTH 75 READ LENGTH 36 READ_LENGTH 100
PAIRED_END YES PAIRED_END YES PAIRED_END NO PAIRED_END NO
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