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Supplementary table 1. Strains and plasmids 

Plasmid or 

Strain 

Relevant genotype or feature Reference 

Plasmid 

pKAS32 Suicide vector for allelic exchange in V. cholerae, AmpR (Skorupski and Taylor, 

1996) 

pLAFR2  Broad-host-range cosmid; mob, TetR (Friedman et al., 1982) 

pBB1 V. harveyi luxCDABE on pLAFR2, TetR (Miller et al., 2002) 

pDH345 V. cholerae cqsS on pSLS4, KanR (Ng et al., 2010) 

pWN1365 V. cholerae cqsSC170F on pDH345, KanR This study 

pWN1960 V. cholerae cqsSC170F on pKAS32, AmpR This study 

pJMH280 V. harveyi cqsS on pGEM-T, AmpR (Henke and Bassler, 2004) 

pWN1513 V. harveyi cqsSF175C on pJMH280, AmpR This study 

pJMH282 V. harveyi cqsS on pLAFR2, TetR (Henke and Bassler, 2004) 

pWN1515 V. harveyi cqsSF175C on pLAFR2, TetR This study 

pWN1327 V. harveyi cqsA on pET-28B, untagged, KanR This study 

WN1666 V. harveyi cqsA on pET-28B, N-terminal His6-tagged, KanR This study 

Vibrio cholerae 

C6706str Wild type (Thelin and Taylor, 1996) 

BH1523 ΔcqsA This study 

DH197 ΔcqsA, ΔluxQ This study 



WN1102 ΔcqsA, ΔluxQ, pBB1 This study 

WN1981 ΔcqsA, ΔluxQ, cqsSC170Y This study 

WN1993 ΔcqsA, ΔluxQ, cqsSC170Y/pBB1 This study 

Vibrio harveyi 

BB120 Wild type (Bassler et al., 1997) 

JMH603 ΔcqsA (Henke and Bassler, 2004) 

JMH626 ΔcqsA, ΔluxN, ΔluxQ (Henke and Bassler, 2004) 

WN1397 ΔcqsA, ΔcqsS, ΔluxN, ΔluxPQ This study 

WN1492 ΔcqsA,  ΔcqsS, ΔluxN, ΔluxPQ/pJMH282 This study 

WN1834 ΔcqsA,  ΔcqsS, ΔluxN, ΔluxPQ/pWN1515 This study 

 



2. HPLC and SFC conditions 

For NP-HPLC, four liters of the cell-free supernant from an M9 culture E. coli overexpressing V. 

harveyi CqsA (see Experimental Procedures for details) was extracted into MTBE (4 x 500 mL), 

the combined organic extract was washed with a saturated brine solution (1 L) and was dried 

over Na2SO4. The dried organics were carefully concentrated in vacuo at room temperature to 

yield a concentrated organic extract in ~2-5 mL of organic solvent. Complete concentration of 

this sample leads to significant loss of biological activity. This concentrated organic sample was 

diluted with hexanes (5 mL) and was purified by preperative HPLC on a system composed 2 

PrepStar SD-1 pumps, a Knauer K-2501 multi-wavelength detector set at 280nm, a Rainin FC-1 

fraction collector and using a PrincetonSPHER Premier (2 x 25 cm) column. The mixture was 

fractionated by application of a gradient from 9:1 hexane:MTBE to 100% MTBE at 20 mL/min 

over 25 min, with fractions collected every minute. Ea-C8-CAI-1 (by HRMS and bioassay) has a 

retention time of 8 minutes, C8-CAI-1 and the -hydroxy ketone regioisomer (by HRMS, NMR 

and bioassay) elute as two smaller peaks between 9 and 10 minutes.  
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Due to the observed instability of purified or unpurified Ea-C8-CAI-1, we turned to an alternate 

strategy for purification. Accordingly, we developed a SFC (supercritical fluid chromatography) 

method using liquid CO2 along with a small amount of per-deuterated methanol (d4-MeOH) as a 

co-solvent. Importantly, this approach directly provides concentrated fractions in d4-MeOH, 

suitable for direct NMR analysis.  

For the purification, four liters of the cell-free supernant from an M9 culture E. coli 

overexpressing V. harveyi CqsA (see Experimental Procedures for details) was extracted into 

MTBE (4 x 500 mL), the combined organic extract was washed with a saturated brine solution (1 

L) and was dried over Na2SO4. The dried organics were carefully concentrated in vacuo at room 

temperature to yield a concentrated organic extract in ~2-5 mL of organic solvent. Purification 

was achieved using a Berger Multigram II SFC system equipped with 2 Varian SD-1 pumps, a 

Knauer K-2501 multi-wavlength dectector set at 280nm, a Knauer K-1900 pump, a Vatran SGP-

50-100 condenser, using a PrincetonSPHER Premier (2 x 25 cm) column. Fractionation of the 

crude mixture was achieved by application of an isocratic method using a mixture of 8% d4-

MeOH/CO2 (100 bar) at 50 mL/min. Fractions were collected manually and the product was 

found to have a retention time of 3.5 min. This fraction was subjected to direct 1H-NMR 

analysis, and found to contain a mixture of Ea-C8-CAI-1 along with C8-CAI-1 and its -

hydroxy ketone regioisomer. 
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3. HRMS analyses (Corrective factor determination and cell-free fluids analyses) 

A. HRMS data for corrective factor determination: 

 

B. HRMS data for the V. harveyi cell-free fluids: 

Molecule 
Ion Abundance from HRMS Calculated Concentration (nM) Average 

Concentration 
(nM) 

Standard 
Deviation Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 

Ea-C8-CAI-1 203.5 329.6 135.7 62.3 49.5 36.6 49.5 12.8 

C8-CAI-1 62 104.6 34.2 198.6 165.0 97.0 153.5 51.8 

Ea-CAI-1 0 0 0 0.0 0.0 0.0 0.0 0.0 

CAI-1 0 0 0 0.0 0.0 0.0 0.0 0.0 

d2-CAI-1 155.4 316.9 176.3 500.0 500.0 500.0 500.0 0.0 

 

C. HRMS data for the V. cholerae cell-free fluids: 

Molecule 
Ion Abundance from HRMS Calculated Concentration (nM) Average 

concentration 
(nM) 

Standard 
Deviation Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 

Ea-C8-CAI-1 141.3 83.9 92.1 23.1 15.0 19.8 19.3 4.1 

C8-CAI-1 0 0 0 0.0 0.0 0.0 0.0 0.0 

Ea-CAI-1 348.7 321.1 320.5 115.2 116.0 139.0 123.4 13.5 

CAI-1 132.3 111.6 98.2 227.6 209.9 221.8 219.8 9.0 

d2-CAI-1 290.7 265.8 221.4 500.0 500.0 500.0 500.0 0.0 

 

The detection limits for the above molecules were determined to be: Ea-C8-CAI-1, 6.25 nM; C8-

CAI-1, 25 nM; Ea-CAI-1, 12.5 nM; CAI-1, 25 nM. This was determined by the analysis of a 

series of samples containing pure samples of each of the listed molecules at concentrations of 50 

nM, 25 nM, 12.5 nM, 6.25 nM, 3.125 nM, and 1.56 nM. Detection limits are described as the last 

sample for which a HRMS peak was observed. 

Molecule ion abundance multiplicative factor of molecular ion to d2-CAI1 
Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 Average Standard 

Deviation 
Ea-C8-CAI-1 49.4 183.7 263 1.30 0.81 0.74 0.95 0.31 

C8-CAI-1 57.6 174.1 192.2 1.12 0.85 1.02 1.00 0.14 
Ea-CAI-1 33 73.5 108.9 1.95 2.01 1.80 1.92 0.11 

d2-CAI-1 64.4 148.1 195.6 1.00 1.00 1.00 1.00 0.00 
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4. Ea-C8-CAI-1 synthesis by V. harveyi CqsA in vitro (A) and in vivo (B) 
 

(A) The substrate required for V. harveyi CqsA to produce Ea-C8-CAI-1 was tested in buffer 

(10 mM HEPES, 0.1 M NaCl) in the presence or absence of C8-CoA (100 µM), SAM (1 

mM), and V. harveyi CqsA (500 nM). The reaction mixture was incubated at room 

temperature for 1 hr and terminated by addition of an equal volume of acetonitrile. The 

reaction mixture was assayed for stimulation of bioluminescence expression in the V. 

harveyi CAI-1 reporter strain JMH626. Only reactions containing CqsA, SAM, and C8 

CoA resulted in induction of bioluminescence. HRMS analysis of the reaction products 

revealed the molecular ion of Ea-C8-CAI-1. RLU denotes relative light units. 
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6.  NMRR analyses off natural annd syntheticc CAI-1 typee compoundds. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 









 

 
 

Synthetic Ea-CAI-1 13C-NMR Natural Ea-CAI-1 13C-NMR

197.1 197.2 

141.8 141.8 

106.9 106.9 

35.2 35.2 

31.4 31.4 

29.0 29.0 

29.0 29.0 

28.8 28.8 

25.1 25.1 

22.2 22.2 

14.0 14.1 

12.2 12.2 

Synthetic Ea-CAI-11H-NMR Natural Ea-CAI-11H-NMR 

5.53 (q, J = 7.1 Hz, 1H) 5.53 (q, J = 7.1 Hz, 1H) 

4.31 (s, 2H) 4.28 (s, 2H) 

2.60 (t, J = 7.3 Hz, 2H) 2.60 (t, J = 7.4 Hz, 2H) 

1.65 (d, J = 7.0 Hz, 3H) 1.65 (d, J = 7.1 Hz, 3H) 

1.53-1.41 (m, 2H) 1.52-1.41 (m, 2H) 

1.30-1.17 (m, 12H) 1.31-1.13 (m, 12H) 

0.85 (t, J = 6.4 Hz, 3H) 0.85 (t, J = 6.9 Hz, 3H) 
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