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3Institute for Systems Biology, Seattle, WA, USA
4School of Medicine, Indiana University, Indianapolis, IN, USA
5Faculty of Science, University of Zürich, Switzerland
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1 Dataset 1: A 3-way factorial study of breast cancer cell lines

1.1 Additional experimental details on the LC-MS/MS investigation

The breast cancer cell lines MCF7 and Hs578T were purchased from ATCC (American Type Culture Col-

lection) and cultured according to ATCC recommendations. The cell lines were incubated at 37 �C under

an atmosphere of 95% air and 5% CO2. Hypoxia treatment was performed by incubating cells for 6 or 24

hours in a hypoxic chamber (Biospherix) maintained at 1% O2 and 5% CO2.

Cancer cells were harvested at confluency and scrapped using a lysis bu↵er (0.32M sucrose, 100 mM

sodium phosphate pH 7.5 and 0.1% NP-40). The cell lysates were sonicated on ice and centrifuge at 10,000

⇥ g for 15 minutes at 4 �C. The supernatants were carefully transferred to new tubes and protein concentra-

tion determined using the BCA protein assay kit (Pierce). An equal amount of proteins, corresponding to 30

mg of whole cell extract per cell line and treatment was used in the N-glycopeptide enrichment procedure.1

In total, 48 samples, including biological and technical replicates, were injected randomly and analyzed using

a hybrid LTQ-Orbitrap mass spectrometer (ThermoFischer Scientific, San Jose, CA, USA) interfaced with

a nanoelectrospray ion source (Proxeon Biosystems). All LC-MS/MS scans were searched against the Inter-

national Protein Index (IPI) human database (version 3.34) using the SEQUEST algorithm. The searching

results were analyzed through the Trans Proteomic Pipeline TPP (version 4.3), including PeptideProphet

and ProteinProphet. A 1% error rate at the peptide level (in this study, less than 1% FDR based on the

number of decoy sequences in the remaining data set and the PeptideProphet probability score (P) � 0.9)

was applied. Quantitative analysis was performed using the open source OpenMS software.2 Several pro-

cessing steps were performed prior to statistical analysis. (i) Only MS1 features mapped to N-glycopeptides

(Nx[ST] motif) and detected in at least 8 out of the 48 runs were retained. (ii) A logarithm transformation

was applied to all feature intensities. (iii) A constant normalization procedure3 was performed to remove

systematic between-run variation. Overall, 1238 aligned features, corresponding to 278 unique proteins, were

retained for analysis. Each N-glycoprotein contains between two to 19 features.

1.2 Exploratory data analysis

The input dataset is in “long” format, where each row corresponds to a single feature intensity, as shown in

Figure 1. In what follows, the data are stored as an R structure of type data.frame labeled cancer.data,

where each row represents a feature intensity in a single run and columns contain sample annotations and

feature intensities.

Figure 2 is an example of exploratory data analysis in MSstats for protein PTPRK. Unlike the protein

TMED9 in the main manuscript, this protein has features with interferences. The statistical model in Figure
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Figure 1: Part of the data structure used as input to MSstats in the 3-way factorial study of the breast
cancer cell lines. The dataset is stored as a .csv file in “long” format.

4 in the main manuscript expresses the presence of interferences via a statistical interaction term (F ⇥C)
ij

.

The plots as in Figure 2 can be produced separately for all proteins with a single command in MSstats,

as shown below.

profilePlots(protein = "gene", feature = "peptide.charge", bio.rep = "bio.id",
group = c("Invasive", "treatment", "time"), abundance = "log2.intensity",
data = cancer.data, address = NULL,
pointSize = 0.8, axisSize = 1, labelSize = 1, stripSize = 0.8, keySize = 0.6)

trellisPlots(protein = "gene", feature = "peptide.charge", bio.rep = "bio.id",
group = c("Invasive", "treatment", "time"), abundance = "log2.intensity",
data = cancer.data, address = NULL,
pointSize = 0.8, axisSize = 1, labelSize = 1, stripSize = 0.8, keySize = 0.6)
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Figure 2: Exploratory data analysis in MSstats for protein PTPRK in the study of breast cancer cell lines.
Y-axis: Log-intensities, lines link log-intensities of LC-MS features, averaged over all replicates. (a) Quality
control. X-axis: all conditions. (b) Feature-level comparisons. X-axis: one factor (time). Each panel: a
combination of the remaining factors.
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1.3 Model-based analysis

In the following section we illustrate a model-based analysis in the case study of breast cancer cell lines. For

features with peak intensities missing in an entire condition, we choose to impute with the average minimum

log-intensity across all runs of the experiment, reflecting the strategy in the main manuscript.

1.3.1 Fit linear mixed model per protein

Reduced scope of biological replication. The model with the reduced scope of biological replication is

specified separately for each protein in a dataset by entering “fixed” in the model argument of the fitModels

function in MSstats.

models <- fitModels(protein = "gene", feature = "peptide.charge",
bio.rep = "bio.id", group = c("Invasive", "treatment", "time"),
abundance = "log2.intensity", model = "fixed",
feature.var = FALSE, missing.action = "impute", progress = TRUE, data = cancer.data)

The argument group allows the user to consider the e↵ect of more than a single factor on abundance. This

capability is critical when multiple factors are studied. Although each name is entered separately in the

group argument, the term condition in Figure 4 (main manuscript) will be created automatically for all

combinations of the groups in MSstats.

Expanded scope of biological replication. The model with expanded scope of biological repli-

cation (Figure 4 in the main manuscript with assumption (b)) is specified for each protein in the dataset

by entering “mixed” in the model agrument of the fitModels function. The specification of the remaining

arguments is the same as for the models with reduced scope of biological replication.

models <- fitModels(protein = "gene", feature = "peptide.charge",
bio.rep = "bio.id", group = c("Invasive", "treatment", "time"),
abundance = "log2.intensity", model = "mixed",
feature.var = FALSE, missing.action = "impute", progress = TRUE, data = cancer.data)

1.3.2 Check qq-plots for Normality

The function qqPlots can be used to check whether the technical variation in the log-intensities is well

approximated by a Normal distribution. The function produces a normal quantile-quantile plot (qq-plot)

separately for each feature mapped to a protein. If points fall approximately along a straight line for

each feature, then the assumption is appropriate for that protein. Only large deviations from the line are

problematic.
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qqPlots(modelFits = models, address = NULL, pointSize = 0.8, labelSize = 1, labelSize = 1)

1.3.3 Check residual plots for equal variance

The model in Figure 4 in the main manuscript assumes that technical variation in the log-intensities of

LC-MS peaks is well approximated by a Normal distribution with a constant variance �2

Error

. Residual plots,

used to visualize the heterogeneity of technical variation, can be produced for all proteins in the dataset by

using the residualPlots function.

residualPlots(modelFits = models, address = NULL, pointSize = 0.8, axisSize = 1, labelSize = 1,
keySize = 0.6)

In practice, it is common for this variation to be highly heterogeneous. As a refinement to the model,

MSstats can express the variances as a function of mean intensity using a loess fit4 in a procedure called

iteratively re-weighted least squares, in which intensities with large variation are given a smaller weight in

the estimation of model-based quantities. This is implemented in MSstats with the argument feature.var,

and it is available for models with reduced and expanded scope of biological replication.

models <- fitModels(protein = "gene", feature = "peptide.charge",
bio.rep = "bio.id", group = c("Invasive", "treatment", "time"),
abundance = "log2.intensity", model = "fixed",
feature.var = TRUE, missing.action = "impute", progress = TRUE, data = cancer.data)

1.3.4 Test comparisons of interest

Here we show the steps for comparing protein abundance between various conditions in a comparison of

interest. This is done using the groupComparison function, the input to which is an object specifying the

comparison of interest, and an object containing the fitted models from fitModels in the previous step.

For illustration we compare protein abundance between cell line types after six hours of normoxia, specified

in Figure 6 in the main manuscript.

Reduced scope of biological replication. The quantities used for testing with reduced scope of

biological replication are presented in Figure 6 of the main manuscript. For implementation in MSstats, we

first express the comparison in terms of conditions, which can be extracted as shown. Users should create a

di↵erent vector specific to their data which reflects the factors in their study.

conditions <- unique(paste(cancer.data$Invasive, cancer.data$treatment,
cancer.data$time, sep = "."))
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The command creates a vector of labels whose elements are concatenations of the three variables of interest

in this study. E.g., the element GROUPH.NM.6 represents the condition given by the high invasive cell line

after six hours of normoxia.

The specific labels that correspond to the conditions in the comparison of interest are used as input

to the makeContrasts function, which expresses the comparison in the appropriate structure for use in

groupComparison. Here those labels are GROUPH.NM.6 and GROUPL.NM.6.

comparison <- makeContrasts(GROUPH.NM.6 - GROUPL.NM.6, levels = conditions)

The groupComparison function simultaneously estimates the log fold change and the corresponding standard

error of the estimate, and compares the ratio of the two quantities to the Student distribution with the

appropriate degrees of freedom to obtain p-values.

results <- groupComparison(modelFits = models, contrast.matrix = comparison, progress = TRUE)

The p-values are adjusted to control the false discovery rate (FDR) using one of several options provided by

the topProteins function.

resultsFdr <- topProteins(comparison.results = results, contrast.matrix = comparison,
comparison.column = 1, rank.by = 1,
number = length(results$Protein), adjust.method = "BH")

The output is a list of the proteins in the dataset, ranked by adjusted p-value from smallest to largest. A

sample of the output is shown in Table 1 for three proteins in the dataset. It includes the estimated log-

(base2) fold change and corresponding standard error, and the value of the test statistic and corresponding

p-value of the comparison, separately for each protein. The log fold change is presented in the column labeled

“Estimate”. For protein PTPRK, the log fold change is �1.40, which corresponds to a fold change on the

original scale of �21.40 = �2.64.1 This indicates that the protein is down-regulated in the high invasive line

after six hours of normoxia, and the small p-value means that the regulation is statistically significant.

Protein Estimate Std. Error t value DF p value adj p value
PTPRK -1.40 0.51 -2.77 314 0.01 0.02
KDELC2 1.29 0.56 2.31 220 0.02 0.03
TMED9 -0.66 0.36 -1.83 173 0.07 0.07

Table 1: Results of testing with reduced scope of biological replication for three proteins in the breast cancer
dataset. “Estimate” is the model-based estimate of the log fold change of the comparison. P-values were
adjusted using the method by Benjamini and Hochberg.

1

The conversion will be di↵erent for di↵erent bases of logarithms, e.g., for datasets in which intensities were transformed

using the natural log, the calculation will be �e1.40.
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Expanded scope of biological replication. Figure 3 presents the quantities used for testing for

di↵erential abundance in models with expanded scope of biological replication. The change in the scope of

biological replication is reflected in two locations:

• The estimate of the variation of the log-fold change, given by SE{L̂}, is now a function of �̂2

Error

as well

as �̂2

S

, the estimated variation due to the selection of biological replicates from underlying populations.

The additional variance term leads to the loss of sensitivity of testing, the extent of which depends on

the amount of underlying biological variation.

• The degrees of freedom of the Student distribution has decreased, additionally reflecting the expanded

scope of conclusions.

The degrees of freedom of the Student distribution in Figure 3 are derived from principles of expected

mean squares of variance components in an analysis of variance framework. In this work, however, quantities

in proposed models are calculated based on an alternative framework known as restricted maximum likelihood

(REML).5 In models with expanded scope of biological replication based on this type of estimation, there

is no generally accepted testing procedure such as the one in Figure 3. The derivation of appropriate test

procedures for these models is an open area of research. As an approximation, many researchers adopt the

procedure based on expected mean squares as we do here. Others argue against the use of test statistics at

all, and advocate a procedure based on simulation. An advantage of the procedure we adopt here is that

there exits a closed form expression of the degrees of freedom for all the models we propose, and it requires

no computationally expensive simulation. The disadvantage is that the underlying framework is based on an

assumption that the distribution of the test statistic is truly known, and the legitimacy of this assumption

is not well-established in these models.

Despite the di↵erences in the models and in the methodology underlying the test procedure, the im-

plementation of the test procedure in MSstats for models with expanded scope of biological replication is

exactly the same as for models with the reduced scope of biological replication. We reproduce the commands

here.

conditions <- unique(paste(cancer.data$Invasive, cancer.data$treatment,
cancer.data$time, sep = "."))

comparison <- makeContrasts(GROUPH.NM.6 - GROUPL.NM.6, levels = conditions)

Note that the first argument to groupComparison will now contain the results of the fitModels function

with model = "mixed" specified, corresponding to the models with expanded scope of biological replication.
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results <- groupComparison(modelFits = models, contrast.matrix = comparison, progress = TRUE)

resultsFdr <- topProteins(comparison.results = results, contrast.matrix = comparison,
comparison.column = 1, rank.by = 1,
number = length(results$Protein), adjust.method = "BH")

Quantity of interest:

H
0

: L = µ̄
[high, nm, 6]· � µ̄

[low, nm, 6]· = 0

Model-based estimate and test statistic:

L̂ = Ĉ
[high, nm, 6]

+ 1

I

IP
i=1

(\F ⇥ C)
i, [high, nm, 6]

� Ĉ
[low, nm, 6]

� 1

I

IP
i=1

(\F ⇥ C)
i, [low, nm, 6]

t =
ˆ

L

SE{ˆL} ⇠ Student distribution

In balanced designs:

L̂ = Ȳ·[high, nm, 6]·· � Ȳ·[low, nm, 6]··

t =
ˆ

Lp
2

IKL

(�̂

2
Error

+�̂

2
S

)

⇠ Student

J(K�1)

distribution

Figure 3: Model-based comparison of protein abundance between cell line types after six hours of nor-
moxia, with expanded scope of biological replication. All notation is as in Figure 4 in the main manuscript.
µ

[high, nm, 6]

is the expected log-abundance of the protein in the high-invasive line under normoxia, after 6
hours of exposure. Other conditions are denoted similarly. “ b ” indicates that the terms are estimated from
the data.

1.3.5 Quantify protein abundance in conditions or samples

Figure 7 in the main manuscript illustrates the estimation of protein abundance in the condition given by

the high invasive cell line after six hours of normoxia. The groupQuantification function can be used to

produce estimates for all conditions, separately for each protein. The input to the function is the output

from fitModels, either with reduced or expanded scope of biological replication.

groupsQuantifications <- groupQuantification(modelFits = models, table = TRUE, progress = TRUE)

In a similar specification, subjectQuantification quantifies the abundance of the proteins in each

biological replicate.

subjectQuantifications <- subjectQuantification(modelFits = models, table = TRUE, progress = TRUE)

The result of both functions is a table of the quantifications, which can easily be exported to a file.
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The adjustedMeansPlots function produces plots of the condition-specific quantifications, and overlays

on each quantification an error bar representing a 100(1�↵)% confidence interval for the quantification (e.g.,

see Figure 8 in the main manuscript), where ↵ is specified by the alpha argument in the command.

adjustedMeansPlots(modelFits = models, alpha = 0.05, address = NULL,
pointSize = 1, axisSize = 1, labelSize = 1)

1.3.6 Design follow-up experiments

The calculateSampleSize function can be used to determine the number of biological replicates per con-

dition necessary to detect a given fold change in a future label-free LC-MS/MS experiment. The function

takes as input:

• modelFits: the fitted models from fitModels, with either reduced or expanded scope of biological

replication. The models are used to calculate an estimate of the technical variation in the future

experiment.

• comparison: a comparison of interest.

• numFeatures: a user-specified number of features in the future experiment.

• numConditions: a user-specified number of conditions in the future experiment.

• numTechReps: a user-specified number of technical replicates per condition in the future experiment.

• diffProp: the user-specified expected proportion of di↵erentially abundant proteins for the comparison

in the previous bullet point.

• desiredFC: a user-specified range of fold changes. The minimal required sample size needed to detect

each fold change will be calculated by the function.

• maxn: a user-specified maximum sample size to display in the plot.

• q: the user-specified desired false discovery rate in the future investigation.

• power: the user-specified desired power of the future investigation, on average over all proteins in the

investigation. Power is the probability of detecting a true change in abundance.

• address: location for which to store the resulting plot.

Using these quantities, the function call to produce a plot of the minimum sample size to detect each fold

change in the range of fold changes is:
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calculateSampleSize(modelFits = models, comparison = comparison,
numFeatures = 3, numConditions = 8, numTechReps = 3, diffProp = 0.2,
desiredFC = seq(1.1, 1.3, by = .05), q = 0.05, power = 0.8, address = NULL)

The arguments numFeatures, numConditions, and numTechReps may be left missing in the call to

calculateSampleSize, in which case these values will be derived based on characteristics of the data in the

current experiment.

1.4 Workflow for an alternative per-feature analysis

Occasionally it can be of interest to perform an analysis at the feature level instead of at the protein level.

MSstats also supports this analysis. The workflow outlined in the previous sections remains the same, with

features now treated as proteins. Specifically, the column in the input data containing feature ids should be

placed in the protein argument of fitModels, and the feature argument should be specified by a column

in the dataset given by a single value, either a number or a character. To perform the per-feature analysis in

the study of breast cancer cell lines we begin by creating a variable that contains a single value in all rows.

cancer.data$feature <- 1

The call to fitModels will specify this column in the feature argument, while the actual feature ids will

be entered in the protein argument of the function. The remaining arguments stay unchanged as shown.

models <- fitModels(protein = "peptide.charge", feature = "feature",
bio.rep = "bio.id", group = c("Invasive", "treatment", "time"),
abundance = "log2.intensity", model = "fixed",
feature.var = FALSE, missing.action = "impute", progress = TRUE, data = cancer.data)

The procedure for testing for di↵erential abundance at the feature level remains the same as in the protein-

level analysis.

2 Dataset 2: A time course study of subjects with osteosarcoma

We now provide commands for an analysis of the time course study of subjects with osteosarcoma, described

in Section 2.2 of the main manuscript. The data from this study are stored in an expression set, the second

type of data format that is compatible with MSstats. An expression set is a structure commonly used for

the storage of data from gene expression microarray experiments.

2.1 Exploratory data analysis

For the exploratory analysis, we transform the data to a data frame using the transformData function.
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osteo.long <- transformData(protein = "gene id", bio.rep = "id",
group = c("group", "time"), data = osteoEset)

Since the study contains time course measurements, the subjectSpecificPlots function can be used to

visualize subject-level variation. The function is specific to designs such as this time course, where biological

replicates, i.e., subjects, are observed in multiple conditions.

subjectSpecificPlots(protein = "PROTEIN", feature = "FEATURE", bio.rep = "BIO.REP",
group = "GROUP", abundance = "ABUNDANCE", data = osteo.long, address = NULL,
pointSize = 0.8, axisSize = 1, labelSize = 1, stripSize = 0.8, keySize = 0.6)

In addition, the same exploratory plots as in Section 1.2 can be produced for this type of study using the

following commands:

profilePlots(protein = "gene id", bio.rep = "id", group = c("group", "time"),
data = osteoEset, address = NULL,
pointSize = 0.8, axisSize = 1, labelSize = 1, stripSize = 0.8, keySize = 0.6)

trellisPlots(protein = "gene id", bio.rep = "id", group = c("group", "time"),
data = osteoEset, address = NULL,
pointSize = 0.8, axisSize = 1, labelSize = 1, stripSize = 0.8, keySize = 0.6)

2.2 Model-based analysis

In the following section we illustrate a model-based analysis for this case study.

2.2.1 Fit linear mixed model per protein

Reduced scope of biological replication. The model in Figure 4 with the assumption (a) in the figure

specifies a model with reduced scope of biological replication for this case study. The model is di↵erent from

the model used in the previous case study of breast cancer cell lines (Figure 4 in the main manuscript) in

that it represents a time course experiment, and as such expresses the additional heterogeneity of changes

in protein abundance between subjects in time through the (C ⇥ S)
jk

statistical interaction term.

The following code is used to specify the model separately for each protein in the dataset:

models <- fitModels(protein = "gene id", bio.rep = "id", group = c("group", "time"),
model = "fixed", feature.var = FALSE, missing.action = "nointeraction",
progress = TRUE, data = osteoEset)

Notice that the feature argument and the abundance arguments are missing from the call. This infor-

mation is automatically extracted from fitModels when the data are stored in an expression set. When

the data are not stored as an expression set, such as in the previous case study, it is required that these

arguments be specified.
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Notice also that the argument missing.action = "nointeraction" is specified. This is default treat-

ment of proteins that have a feature which is missing entirely in one condition.2 In this case study, however,

an independent imputation step was performed prior to analysis, and so there are no missing peak intensities.

As a result, the argument will have no impact on model fitting in this particular dataset.

Aside from these three arguments, the form of the call to fitModels is similar to the case study of breast

cancer cell lines, despite the fact that the design of the two experiments is quite di↵erent. The di↵erences

in the statistical models are accounted for internally by the software, which automatically detects multiple

observations on each biological replicate.

Deviation from the reference due to

log( Expected Random

peak = reference + peptide + condition + feat. ⇥ cond. + biol. + cond. ⇥ subj. + meas.

intensity) abundance feature interaction replicate interaction error
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�
0,�2

S

�
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⇣
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⌘

Figure 4: Linear mixed e↵ects model for a time course experiment. i = 1, . . . , I is the index of a feature,
j = 1, . . . , J the index of a condition, k = 1, . . . ,K the index of a biological replicate, and l = 1, . . . , L of a
technical replicate. �2

Error, ijk

is the variance of the measurement error, �2

S

the between-subject variance in

the underlying population, and �2

C⇥S

the variance due to the random interaction e↵ects. µ
111

is the expected
log-intensity of the first feature, first condition, and first biological replicate. (a) and (b) are two alternative
interpretations of the term subject, which distinguish reduced and expanded scopes of biological replication.
A separate model is specified for each protein.

Expanded scope of biological replication. The model with expanded scope of biological repli-

cation corresponds to assumption (b) in Figure 4. In a time course experiment, expanded scope of biological

replication implies that not one but two terms in the model (S
k

and (C ⇥ S)
jk

) are viewed as random

instances from the underlying populations. Therefore, unlike the model for expanded scope of biological

replication in the case study of breast cancer cell lines, the model now contains three variance components:

�̂2

Error

and �̂2

S

as before, and an extra term �̂2

C⇥S

, reflecting the variation due to the random e↵ects of the

(C ⇥ S)
jk

statistical interaction.3

2

It is one of the three possible treatments of proteins with excessive missing values (described in Section 2.5 of the main

manuscript).

3

Due to the additional variance component, the model expresses two types of correlations, between peaks from the same

biological replicate across conditions, and also between peaks from the same subject within a condition.

5
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The model is specified in MSstats by specifying model = "mixed"; the remaining arguments are the

same as in the specification of the model with reduced scope of biological replication.

models <- fitModels(protein = "gene id", bio.rep = "id", group = c("group", "time"),
model = "mixed", feature.var = FALSE, progress = TRUE, data = osteoEset)

2.2.2 Check qq-plots for Normality and residual plots for equal variance

Code for producing qq-plots to check for Normality, and residual plots to check for equal variance, is as

in Section 1.3.5.

qqPlots(modelFits = models, address = NULL, pointSize = 0.8, labelSize = 1, labelSize = 1)

residualPlots(modelFits = models, address = NULL, pointSize = 0.8,
axisSize = 1, labelSize = 1, keySize = 0.6)

2.2.3 Test comparisons of interest

Here we show the steps for comparing protein abundances prior to surgery (week 10) and post-surgery

(week 13).

Reduced scope of biological replication. The quantities used for testing the comparison using

models with reduced scope of biological replication are presented in Figure 5.

The implementation of the test procedure in MSstats is the same as in the case study of breast cancer

cell lines. We first frame the comparison of interest in terms of the conditions in the study, which are

combinations of experimental group (osteosarcoma/control) and time. The di↵erence in this case study lies

in how we extract the labels for the conditions. Because the data are stored in an expression set, we extract

the labels from the phenoData component as shown.

conditions <- unique(paste(pData(osteoEset)$group, pData(osteoEset)$time, sep = "."))

The labels corresponding to the conditions of interest, i.e., GROUPOS.10, representing osteosarcoma subjects

prior to surgery (week 10), and GROUPOS.13, representing osteosarcoma subjects immediately post-surgery

(week 13), are used to specify the comparison using makeContrasts.

comparison <- makeContrasts(GROUPOS.10 - GROUPOS.13), levels = conditions)

The comparison is tested, and p-values adjusted for multiple comparisons, as in the previous case study of

breast cancer cell lines.

results <- groupComparison(modelFits = models, contrast.matrix = comparison, progress = TRUE)
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Quantity of interest:

H
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Figure 5: Model-based comparison of protein abundances prior to surgery (week 10) and post-surgery (week
13), with reduced scope of biological replication. All notation is as in Figure 4. µ̄

[disease, week:10]· is the
expected log-abundance of the protein in the osteosarcoma patients prior to surgery (week 10), on average
over the biological replicates. Other conditions are denoted similarly. “ b ” indicates that the terms are
estimated from the data.

resultsFdr <- topProteins(comparison.results = results, contrast.matrix = comparison,
comparison.column = 1, rank.by = 1,
number = length(osteoResults$Protein), adjust.method = "BH")

Expanded scope of biological replication. Figure 6 illustrates the testing procedure for models with

expanded scope of biological replication. The change in the scope of biological replication is reflected in the

standard error of the estimated log-fold change, which is now a function of the random error �̂2

Error

and

�̂2

C⇥S

, the variance due to the random e↵ects of the statistical interaction C ⇥ S in Figure 4.

Since this particular comparison involves two time measurements on the same subjects, the standard error

dies not depend on the the estimated variance due to random e↵ects of subjects �̂2

S

. In other comparisons,

e.g., those involving comparisons of the control group to the osteosarcoma subjects, this quantity will be

reflected in SE{L̂}.

As in the study of breast cancer cell lines, the degrees of freedom of the Student distribution have also

changed to reflect the expanded scope of biological replication. Again, we note that the degrees of freedom are

approximate for this type of model, as they are based on principles of expected mean squares in an analysis

of variance framework. As discussed in Section 1.3.4, this framework di↵ers slightly from the framework

underlying the proposed models, in which there is no consensus expression for the degrees of freedom for
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expanded scope of biological replication.

Despite the di↵erences in the model and in the testing procedure, the code in MSstats for estimating the

quantities and testing the comparison are the same as those presented for reduced scope of replication; we

reproduce those commands here.

conditions <- unique(paste(pData(osteoEset)$group, pData(osteoEset)$time, sep = "."))

comparison <- makeContrasts(GROUPOS.10 - GROUPOS.13), levels = conditions)

The first argument to groupComparison will now contain the results of the fitModels function with model

= "mixed" specified, corresponding to the models with expanded scope of biological replication.

results <- groupComparison(modelFits = models, contrast.matrix = comparison, progress = TRUE)

resultsFdr <- topProteins(comparison.results = results, contrast.matrix = comparison,
comparison.column = 1, rank.by = 1,
number = length(osteoResults$Protein), adjust.method = "BH")

Quantity of interest:

H
0

: L = µ̄
[disease, week:10]· � µ̄

[disease, week:13]· = 0

Model-based estimate and test statistic:

L̂ = Ĉ
[disease, week:10]

+ 1

I

IP
i=1

(\F ⇥ C)
i,[disease, week:10]

- Ĉ
[disease, week:13]

� 1

I

IP
i=1

(\F ⇥ C)
i,[disease, week:13]

t =
ˆ

L

SE{ˆL} ⇠ Student distribution

In balanced designs:

L̂ = Ȳ·[disease, week:10]·· � Ȳ·[disease, week:13]··
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2
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Figure 6: Model-based comparison of protein abundances prior to surgery (week 10) and post-surgery (week
13), with expanded scope of biological replication. All notation is as in Figure 4. µ̄

[disease, week:10]· is the
expected log-abundance of the protein in the osteosarcoma patients prior to surgery (week 10), on average
over the biological replicates. Other conditions are denoted similarly. “ b ” indicates that the terms are
estimated from the data.

2.2.4 Quantify protein abundance in conditions or samples

Figure 7 illustrates the estimation of protein abundance for the group of control patients using quantities

from the model in Figure 4. To produce the estimates for all conditions, separately for each protein, the

groupQuantification can be used, with the same specification as in the case study of breast cancer cell

lines. As before, the input to the function is the result of the call to fitModels, with either reduced or

expanded scope of biological replication.
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groupQuantifications <- groupQuantification(modelFits = models, table = TRUE, progress = TRUE)

In a similar specification, subjectQuantification quantifies the abundance of the proteins in each biological

replicate.

subjectQuantifications <- subjectQuantification(modelFits = models, table = TRUE, progress = TRUE)

Figure 8(b) in the main manuscript displays the estimated proteins quantifications, and associated con-

fidence intervals, across conditions for one of the proteins, Entrez ID 28299, in the dataset. Similar plots are

created for all proteins using the adjustedMeansPlots function.

adjustedMeansPlots(modelFits = models, alpha = 0.05, address = NULL,
pointSize = 1, axisSize = 1, labelSize = 1)

Model-based estimate:
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(
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In balanced designs:

µ̂·[control, week:0]· = ¯Y·[control, week:0]·; and SE{µ̂·[control, week:0]

·} =

q
1

IKL

�̂2

Error

Figure 7: Model-based quantification of the expected abundance of a protein in the control group, with
reduced scope of biological replication. “ b ” indicates that the model-based quantities are estimated from
the data.

2.2.5 Design follow-up experiments

As in the case study of breast cancer cell lines, the calculateSampleSize function produces a plot that can

be used to determine the minimum number of biological replicates per condition required to detect a given

fold change in a future investigation.

calculateSampleSize(modelFits = models, comparison = comparison,
numFeatures = 12, numConditions = 18, numTechReps = 0, diffProp = 0.2,
desiredFC = seq(1.1, 1.3, by = .05), q = 0.05, power = 0.8, address = NULL)
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Steps Action to take in MSstats

Statement of the problem

• Specify appropriate model for desired scope of biological replication

in the fitModels function

Exploratory data analysis

• Use trellisPlots and profilePlots to detect mis-identified features

or features with excessive missing values

• Specify strategy for treatment of missing values in fitModels function

Model-based analysis

• Use fitModels to fit linear mixed model per protein

• Use qqPlots to check for Normality

• Use residualPlots to check for equal variance; if deviations, specify

feature.var = TRUE in fitModels and re-fit the models

• Use makeContrasts, groupComparison, and topProteins to test com-

parisons of interest

• Use groupQuantification and subjectQuantification to quantify

protein abundance in conditions and samples; use adjustedMeansPlots
to display condition-specific quantifications

Design follow-up experiments

• Use calculateSampleSize to find minimal sample size for a given

fold change, or minimal fold change for a given sample size

Table 2: R-based functions for the proposed workflow in MSstats.

17



References

1. Zhang, H.; Li, X. J.; Martin, D.; Aebersold, R. Nature Biotechnology 2003, 21, 660–666.
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