Supporting Information Text S5: analysis of SF motifs and extended SF motifs after coevolution analysis of the AATPase families

	SF mot	ifs	
	# residues	# co-evolving	
SF family	in SF motifs	positions	Ratio
Upf1	18	26	0.69
RecD	32	73	0.43
UvrD/Rep	30	38	0.78
Rad3	28	62	0.45
DEAD-box	16	16	1
RecQ	31	42	0.73
Ski2-like	22	35	0.62
RigI-like	40	104	0.38
DEAH-RHA	29	43	0.67
NS3/NPH-II	36	101	0.35
Swi2/Snf2	14	15	0.93
	Extended SE	^r motifs	
Upf1	23	26	0.88
RecD/Pif1	50	73	0.68
UvrD	37	38	0.97
Rad3	52	62	0.83
DEAD-box	16	16	1
RecQ	39	42	0.92
Ski2-like	26	35	0.74
RigI-like	70	104	0.67
DEAH-RHA	41	43	0.95
NS3/NPH-II	72	101	0.71
Swi2/Snf2	15	15	1

Table 1: AATPase subfamilies: information about BIS analysis on SF motifs and extended SF motifs.

BIS analysis of 11 helicase subfamilies (first column). BIS was run on blocks of $d \leq 1$. Top: we report the number of coevolving positions that belong to the SF motifs as defined in (Fairman-Williams et al. 2010) (second column), the total number of coevolving positions (third column), the ratio of the second and third columns (fourth column). Whenever a residue belongs to one of the clusters in either d = 0 or d = 1, it will be counted once. Notice that a ratio equal 1 corresponds to co-evolving residues that belong to known SF-motifs. Bottom: as on top but considering an extension of SF motifs instead of SF motifs. As defined in the article, SF motifs are extended on their right and left hand side by 5 positions. The idea is to verify whether predicted co-evolving residues are essentially located around motifs or not.

_	_	-			_	-	-	-	-	-	-	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_
			\mathbf{Ratio}		0.40	0.60	0.50	0.14	1.00	0.38	0.50	0.38	0.62	0.50	0.00		0.60	09.0	0.69	0.57	1.00	0.66	0.83	0.63	0.77	0.50	0.00
	CA-TM		#co-ev	bos	2	10	16	7	4	47	9	×	13	2	0		5	10	16	7	4	47	9	×	13	5	0
	s	#co-ev	res in SF	motifs	2	9	8	1	4	18	n	n	8	1	0		9	9	11	4	4	31	ъ	ъ	10	1	0
			Ratio		0.50	0.58	0.44	0.23	1	0.38	0.50	0.38	0.59	0.50	0		0.63	0.58	0.72	0.64	1	0.66	0.83	0.63	0.76	0.50	0
tifs	CA-DB		#co-ev	b os	8	12	18	22	4	47	9	×	17	5	0	motifs	×	12	18	22	4	47	9	×	17	5	0
es of SF mot	Ň	#co-ev	res in SF	motifs	4	7	×	£	4	18	n	n	10		0	extended SI	5	7	13	14	4	31	ъ	5	13	-1	0
M analys			Ratio		0.64	0.23	0.34	0.40	0	0.71	0.19	0.19	0.73	0	0.21	alyses of	0.68	0.26	0.37	0.40	0	0.80	0.21	0.21	0.93	0.50	0.21
nd SCA-T	ELSC		#co-ev	bos	22	87	65	25	0	35	70	70	15	7	19	CA-TM ar	22	87	65	25	0	35	20	20	15	7	19
SCA-DB a		#co-ev	res in SF	motifs	14	20	22	10	0	25	13	13	11	0	4	A-DB and SC	15	23	24	10	0	28	15	15	14	-	4
T, ELSC,			Ratio		0.60	0.41	0.52	0.28	1	0.47	0.60	0.23	0.60	0.31	0.75	LSC, SCA	0.69	0.56	0.66	0.49	1	0.65	0.81	0.42	0.78	0.48	0.85
MS	MST		#co-ev	bos	35	63	59	110	17	81	53	207	55	132	20	MST, E	35	63	59	110	17	81	53	207	55	132	20
		#co-ev	res in SF	motifs	21	26	31	31	17	38	32	48	33	41	15		24	35	39	54	17	53	43	86	43	63	17
		total #	res in SF	motifs	64	55	62	55	66	65	62	64	63	62	76		129	110	122	120	136	135	132	134	133	125	146
			SF families		Upf1	RecD/Pif1	UvrD	Rad3	DEAD-box	RecQ	Ski2-like	Rig1-Like	Deah-RHA	NS3/NPH-II	Swi2/Snf2		Upf1	RecD/Pif1	UvrD	Rad3	DEAD-box	RecQ	Ski2-like	Rig1-Like	Deah-RHA	NS3/NPH-II	Swi2/Snf2

Table 2: AATPase subfamilies: information on MST, ELSC, SCA-DB and SCA-TM analyses of SF motifs and extended SF motifs.

MST, ELSC, SCA-DB and SCA-TM analyses realized on 11 helicases subfamilies (first column). MI and CTMP did not provide any prediction. For each SF family, the total size of the SF motifs, as defined in (Fairman-Williams et al. 2010), is reported (second column). Top: for each method of coevolution analysis (MST, ELSC, SCA-DB and SCA-TM) we report the total number of coevolving positions detected by the method, the number of co-evolving positions detected by the method and belonging to the SF motif, the ratio of the two numbers. Notice that a ratio equal 1 corresponds to co-evolving residues that belong to known SF-motifs. Bottom: as on top but considering an extension of SF motifs instead of SF motifs. As defined in the article, SF motifs are extended on their right and left hand side by 5 positions. The idea is to verify whether predicted coevolving residues are essentially located around motifs or not. Compare to Table 1-Text S5. 3

Not a motif	iVA	IVA Ib		Ib		IIIa	IIIa	IIIa IB		IIIa	Ib IIIA	IIIa	IIIA IB			
Not Correlated	Ia V					Q IC IVA V	Ib IV Iva V Vb	Ib Iva		Q IV IVa Vb	Ib Iva	Iva				Ib Ic III IIIa IV IVa
Conserved	Q I II III IIIa IV Va Vb VI	Q I Ia II III V Va VI		I II III IIIa IV V VA VB VI		I II III IV Va Vb VI	Q I II III Va VI	Q I Ia II III V Va Vb VI		I Ia II III V Va VI	Q I Ia Ic II III IV V Va VI	Q I Ia II III V Vb VI	I Ia Ib Ic II III Vb VI			I Ia III VI
H/NAB/PNB										I Ia V Va		I Ia Ic II III V Va				Ia Va VI
NAB/PNB				IV IVA Va		Ia Ib III IV		III IV Va			III IV Iva Ia V Va		III IV III V Va Vb	2		
H/NAB		I Ia VI	II IIIa Ic Vb	Ia VI	Q V	Ia II	Ia VI	Q I Ia IV VI	I Ic V	ΙV	Ia II Vb VI		Q Ia I Ia	Ic II	IV V	
PNB						III Va										
NAB	Ib Ic	Ia V					Ia Ic			Ic V		Ia IV				
Name	Upf1	RecD/Pif1		UvrD		Rad3	DEAD-box	RecQ		Ski2-like	RigI-like	DEAH-RHA	NS3/NPH-II			Swi2/Snf2
S-Fam	SF1	SF1		SF1		SF2	SF2	SF2		SF2	SF2	SF2	SF2			SF2

Table 3: **AATPase subfamilies: correlations between motifs for** $d \leq 1$ **in SF1 and SF2 subfamilies.** Coevolution analysis highlights that known SF motifs defined in (Fairman-Williams et al. 2010) are correlated. We say that two motifs are correlated when there is at least a pair of co-evolving residues that belongs to the motifs. Correlations are summarized in several columns identifying the function of the motifs: ATP binding and hydrolysis (H), nucleic acid binding (NAB) and coordination between polynucleotide binding and ATPase activity (PNB). The last three columns (from left to right) list: motifs forming a cluster of fully conserved residues, motifs that do not contain coevolving residues, known motifs that do not belong to the specific subfamily.