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ABSTRACT Restriction endonucleases cut DNA at specific
sites determined by the local nucleotide sequence. By comparing
related DNA segments with respect to where such cuts are made,
one can estimate the extent of sequence homology between the
segments. Empirical methods are presented here for using these
data to measure- the proportion of mismatches between two se-
quences, the proportion of polymorphic positions in a series of
sequences, or the degree of heterozygosity in a population. These
methods do not require any assumptions concerning the evolu-
tionary or population genetic processes involved. One can also use
the data to calculate the precision ofeach ofthese estimates. When
the positions of the cuts are not determined, these estimates can
be made, using only the lengths of the resulting DNA fragments,
by means of a maximum likelihood procedure. Several examples
demonstrate the usefulness of these methods to study genetic dif-
ferences in regions of the genome not amenable to study by other
methods.

A large part of experimental population genetics in the last two
decades has dealt with protein differences within and between
populations; see chapter 7 of Wright (1) for a review. More re-
cently, the use of restriction endonucleases and accompanying
DNA technology has made it possible to study differences at
the level of DNA sequences. Several studies (2-5) have dem-
onstrated variability in DNA sequences as revealed by variation
in the lengths ofDNA fragments after digestion by one or more
sequence-specific restriction enzymes. A major advantage of
this method is that it can be used for any segment ofthe genome,
regardless of whether or not it codes for a soluble protein. It
is only necessary to be able to identify the particular fragments
of interest by prior purification of a given class of DNA (2, 4,
5) or by hybridization to a labeled homologous probe (3). Any
variability at cleavage sites within the DNA thus identified will
be detected, provided there are no large deletions or insertions
causing observable length differences.

There have been several discussions of how such data may
be used in genetic mapping (6), or how they may be related to
models of evolutionary divergence (7-10) or steady-state pop-
ulation genetics (11) in order to estimate the parameters in these
models. My purpose in this paper is to present empirical meth-
ods for estimating genetic divergence or population variability
independent ofevolutionary or population genetic models. The
precision of these estimates can also be obtained with minimal
assumptions concerning population structure. These methods
can be applied to cases in which all restriction sites in the sample
have been mapped, as well as those in which only the lengths
of restriction fragments are available.
Data and Definitions. Notation will follow that of Ewens et

al. (11) wherever possible. Our sample is assumed to consist of

n homologous segments, each approximately L nucleotides
long. This sample might have come from n individuals drawn
from a population whose variability we wish to measure, or from
representatives of n species whose genetic divergence is of in-
terest. Alternatively, they might be homologous regions within
a single genome such as the At and Gy human globin genes
discussed below, which arose by gene duplication and have
diverged in evolutionary time. Each segment in the sample is
treated with one or a series of restriction endonucleases, and
the lengths of the resulting fragments are determined. Assume
for the moment that these lengths allow us to determine the
exact point at which each enzyme cuts each fragment. (Data in
which this final step was not taken, and therefore only identity
of fragment lengths can be determined, will be considered be-
low for the case of n = 2.) Ifj is the length of the recognition
sequence ofa given endonuclease-usually 4-6 base pairs-we
may define a site as any sequence ofj positions (base pairs). A
cleavage site is defined as any site where at least one member
of the sample was cleaved. If there are m cleavage sites, then
the data consist of the values c1, c2, . .., cm (1 ' ci < n) rep-
resenting the numbers of members in the sample cut at each
site by one ofthe enzymes. The total number of cuts at all cleav-
age sites will be denoted by c.

ESTIMATORS
Frequency of polymorphism
A site may be considered polymorphic if at least one of its j
positions is polymorphic in our sample. Ifk ofthe cleavage sites
are observed to be polymorphic for the recognition sequence
(that is, 1 ' ci s n - 1 for exactly k sites), we might consider
k/m as an estimate ofthe proportion ofpolymorphic sites in the
entire segment. This estimator appears to be the one most often
used (2, 3). However, as pointed out by Ewens et al. (11), and
by Nei and Li (8) for the case of n = 2, this estimator contains
a serious ascertainment bias because it is conditioned on the
presence of at least one cut. We may correct this bias by as-
suming that the frequency of the recognition sequence among
monomorphic sites of whatever type has the same expectation
as its frequency in the sample as a whole. That is, the probability
that a given site is monomorphic does not depend on its nu-
cleotide sequence. This assumption may be written as
E(m- k) = (L - j + 1)

X P(monomorphic site) P(recognition sequence), [1]

in which P( ) indicates probability given a randomly chosen site.
Noting that

E(c) = n(L - j + 1) P(recognition sequence),

we have
P(monomorphic site) = nE(-)

[2]

[3]
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Replacing the expectations by their observed values gives the
estimator

P(monomorphic site) = ( k) [41

For a heuristic interpretation of this estimator, note that it is
the proportion of all cuts in the sample that occurred in mono-
morphic sites. A special case of Eq. 4 was given by Nei and Li
(8), (their [10] corrected by changing "xx" to "nx").
To estimate the polymorphism, p, at single positions, one

possibility suggested by previous authors (7, 8) is to use

Heterozygosity
If the n sequences come from a random sample of individuals
in the population, we may estimate the heterozygosity in the
population. Let vi represent the true frequency in the popu-
lation of the recognition sequence at site i. Then by an as-
sumption similar to Eq. 1 we write

X drj = (L - j + 1) P(homozygous site) P(recognition sequence),

which may be combined with Eq. 2 to yield

p = 1 - P(monomorphic site)11I [5]

from the assumption that each position is independent of its
neighbors. When the experiment includes several enzymes
with various lengths of recognition sequences, some weighted
average of the estimates from Eq. 5 must be used (8). A rea-
sonable alternative suggested by Ewens et al. (11) is to asume
that a given site may be polymorphic at no more than one of its
j positions. With this assumption, p may be estimated by P(po-
lymorphic site)/j, or

c- n(m- k) [6]
ic

P(homozygous site) = E(c)
Noting that

7,li2=E I~(Cj- 1)1

[ n(n- 1)]

from p. 69 of ref. 12, and replacing expectations by their ob-
served values, leads to the estimator

P(homozygous site) = lcj(c( - 1)
C(n -1) [9]

Finally, if we assume as before that a given site may be het-
erozygous at no more than one position so that

The interpretation of Eq. 6 is seen by noting that the nu-
merator is the total number of cuts at or near polymorphic po-
sitions, and the denominator is the total number of positions in
the sample recognized by the endonuclease. This estimator has
the advantage of being easily extended to several endonu-
cleases. The same formula may be used with c, m, and k being
summed over all enzymes, andj redefined as the average length
of recognition sequences weighted by the total number of cuts
made by each enzyme. The interpretations of the numerator
and denominator are thus preserved.
When A is used to measure genetic divergence between two

genomes, it is an estimate ofthe proportion ofbase mismatches.
If the n segments are taken from a larger population, p must be
interpreted as an estimate of the frequency of polymorphism
only in the sample at hand; it does not estimate polymorphism
in the population as a whole. However, under the Wright-Fisher
model of random sampling with mutation but no selection, p
may be used in estimating population parameters. Thus, by the
arguments of Ewens et al. (11), the quantity P/ln n estimates
o = 4Nu at equilibrium, in which N is the diploid population
number and u is the mutation rate.

Ewens et al. also showed that, under this model, the expected
values of c, m, and k should be related at equilibrium in such
a way that

P= kg~' [7]

and they suggest using this relationship to estimate p and re-
lated quantities. However, Eq. 6 might be considered prefer-
able because it is free ofassumptions concerning the population.
To compare Eq. 6 with approximation 7, note that in the special
case of n = 2, the variables c, m, and k are constrained by the
identity c = 2m - k irrespective ofour assumptions concerning
the structure of the population. Thus Eq. 6 becomes

A
k

P 2jm- kj' [8]

implying that 7 is a reasonable approximation when k << m,
even though Ewens's approximation requires moderately large
values of n.

H = P(heterozygous site)/j

is the heterozygosity per position, we have the estimator
nc - 1)

jc(n -1)

[10]

[11]

This estimator requires no specific population genetic model.
Furthermore, Eq. 10 is true under the stated assumption re-
gardless of whetherj refers to a single enzyme or to an average
weighted by number of cuts over a heterogeneous series of en-
donucleases. This is because j measures the expected number
of positions per recognized site in both cases. Therefore, the
estimator 11 may be applied directly when several enzymes are
used.
When n = 2, heterozygosity and polymorphism have the

same meaning, and we should expect H to be equal to f. This
equality is readily demonstrated by substituting n = 2, c = 2m
- k, and E c2 = 4m - 3k into Eqs. 6 and 11. The last substi-
tution comes from setting ci = 1 for k of the cleavage sites and
ci = 2 for the rest.
DNA fragment lengths
In the above discussions, I assumed that the number of cuts at
each cleavage site had been determined from the resulting frag-
ment lengths. This determination is often possible even without
constructing the entire restriction map. For example, Brown
(5) was able to interpret each of59 distinct fragment length pat-
terns as single changes (gains or losses ofa recognition sequence)
relative to a "typical" pattern for each enzyme without knowl-
edge of the sequential order of the fragments. However, pub-
lished data are often given as fragment lengths only (4), and the
numbers of cuts can only be estimated. This situation usually
arises when comparing two sequences (the case of n = 2), and
that is the only case considered here.

Suppose F is the total number offragments seen in both DNA
segments, and G is the number of pairs offragments with iden-
tical lengths, and thus assumed to be homologous in the two
segments. The problem is to estimatemand kfrom the observed
F and G. We may reduce this problem to the estimation of k
alone by noting the relationship

m = (F + k + 2)/2 [12]
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Table 1. Estimates of k for linear DNA
G

F 0 1 2 3 4 5 6 7 8 9 10 11 12

1*
2*
1 1*

2 2*
3 1
2 2
3 3
4 2
5- 3
4 4
5 3
6 4
7 5
6 6
7 7

1*
2*
1 1*
2 2*
3 1 1*

2 2 2*
3 3 1 1*

4 2 2 2*
3 3 3 1 1*

4 4 2 2 2*
5 3 3 3 1 1*

Table 2. Estimates of k for circular DNA
G

F 0 1 2 3 4 5 6 7 8 9 10 11 12
4 4
5 5 1*
6 6 2*
7 7 3* 1*
8 8 2 2*
9 9 3 3* 1*

10 10 4 2 2*
11 11 5 3 3* 1*
12 12 6 4 2 2*
13 13 7 5 3 3* 1*
14 14 6 4 4 2 2*
15 15 7 5 3 3 3* 1*
16 16 8 6 4 4 2 2*
17 17 9 7 5 3 3 3* 1*
18 18 10 8 6 4 2 2 2*
19 19 11 9 7 5 3 3 3* 1*
20 20 12 8 6 6 4 4 2 2*
21 21 13 9 7 5 5 3 3 3* 1*
22 22 14 10 8 6 6 4 4 2 2*
23 23 13 11 9 7 5 5 3 3 3* 1*
24 24 14 12 10 8 6 4 4 4 2 2*
25 25 15 13 9 9 7 5 5 3 3 3* 1*
* Exact.

For conditional estimates, add or subtract 2 from entries with + or
- superscript; see text.
* Exact.

for linear DNA because the endpoints represent cleavage sites,
and

m = (F + k)/2 [13]

for circular DNA. Several authors (7, 8) have suggested ways
to estimate k or related parameters from F and G by taking into
account such quantities as average base composition, expected
length of fragments, etc. However, I suggest using the maxi-
mum likelihood estimator, which is independent of all these
quantities. The only assumption needed is that all permutations
of the k dimorphic sites and the m - k monomorphic sites are

equally likely. Note that this assumption is implicit in all evo-

lutionary models so far proposed (7-11), and it is independent
of all parameters in these models. Because these models deal
only with the frequencies of base changes, not their spatial or-

derings, the values of k given in Table 1 for linear DNA and in
Table 2 for circular DNA may be considered maximum likeli-
hood estimates for all these models plus any other models in
which the ordering of sites is random. The tabled estimate of
k and the corresponding m may be used in Eq. 8 to estimate
the proportion of mismatched bases. When there are several
enzymes, k and m may be estimated separately for each, then
summed before applying Eq. 8.

Tables 1 and 2 were calculated as follows. Every pair of ad-
jacent monomorphic sites results in one pair ofhomologous frag-
ments, therefore

G = m-k-a, [14]

in which a is the number of runs of monomorphic sites. For
example, if k = 2 polymorphic sites and m - k = 5 mono-

morphic site were arranged in the order MMMMPPM, then
there would be a = 2 runs ofMs and we have G = 3. The prob-
ability (likelihood) ofa may be obtained from combinatorial con-

siderations. Thus,

[15]

(m-k-I (k+I1

P(a) =
(mv

[16]

for circular DNA. The derivations ofEqs. 15 and 16 are outlined
on p. 62 ofref. 13 and p. 94 ofref. 14, respectively. Using these
equations along with Eqs. 12, 13, and 14, the likelihoods of all
permissible values of k were calculated up to F = 25, and the
maximizing ks are given in Tables 1 and 2. All entries with an

asterisk may be considered exact, because they represent the
only values of k with nonzero likelihood. This consideration is
important because published data appear to fall into the exact
categories more often than not (see below), thus simplifying
variance calculations.
The assumption of equiprobable permutations seems rea-

sonable for all cases ofcircular DNA such as from mitochondria,
but for linear DNA we might want to take into account irreg-
ularities at the termini resulting in certain permutations being
forbidden. For example, one will not observe any permutation
starting with PM... or ending with ... .MP (M = monomorphic;
P = polymorphic) because of the requirement that each seg-
ment be delimited by endonuclease cuts. We might therefore
revise our assumption by stating that all permutations other
than these forbidden ones are equiprobable and modify Eq. 15
accordingly. By subtracting from the numerator of Eq. 15 the
number of distinguishable forbidden permutations with a runs
ofMs, and subtracting from the denominator the total number
offorbidden permutations, we arrive at the required conditional
probability (likelihood),

3 5 1*
4 6 2*
5 71
6 82
7 93
8 10 4
9 11 5
10 12 6
11 13 5+
12 14 6
13 15 7
14 16 8
15 17 9
16 18 10
17 19 11
18 20 12
19 21 13
20 22 14
21 23 13
22 24 14
23 25 15
24 26 16
25 27 17

1*
2*
1
2
3
4-
3
4
5
6
7
8
7
8
9

10
11+
12
11
12
13

1*
2*
1
2
3
2
3
4
5
6
5
6
7
8+
9
8
9
10
11

1*
2*
1
2
3
2
3
4
5
4
5
6
7
8
7
8
9
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(m - k - 1 [(k+ 1) - 2(k - 1 + - )]

k
2

(k- 1
+

(k-2

P(a) =

Recomputing Table 1 by using Eq. 17 resulted in only minor
changes. Thus five entries were increased or decreased by 2 as
indicated in Table 1 (superscript + or -, respectively). Note
also that the diagonal outcomes in which G = (F - 1)/2 are no
longer possible. Other minor irregularities at the termini such
as the ambiguous sequences MPM... and PPM... might also
be considered, but they occur even less frequently than the ones
considered above and are likely to have less effect.

STATISTICAL PROPERTIES OF THE ESTIMATORS
The statistics p and A have no true moments because the ob-
servation c = 0 has positive probability, and c appears in the
denominators ofboth expressions. However, for statistical pur-
poses in the discussion below, I refer to the conditional distri-
butions given c # 0. The variance estimators thus derived may
be used as approximations, provided the observed c is not too
close to zero. First, note that neither A nor H is unbiased, be-
cause they come from the ratio of two expectations. The mean
squared error ofthese statistics about their true values is there-
fore partly from this bias, and the rest is due to sampling error.
The sampling error is probably more important, and its esti-
mation is considered in this section. Of course, the meaning of
sampling variance depends on a scheme for creating hypothet-
ical repetitions ofthe experiments. In the following calculations
I will consider the true values ofp andH to be parameters rather
than variables. Thus the resulting variances are statistical sam-
pling variances measuring the precision with which we know
these parameters. They do not measure the variation in these
values that would result from a hypothetical repetition of the
evolutionary process that generated them.

Genetic Divergence (n = 2). Consider two fixed genomes
for which Eq. 8 was used to estimate the proportion of mis-
matched bases. To repeat the experiment with the same two
genomes, one could use a different set of restriction endonu-
cleases, or move to a different part of the genome. Either way,
the numbers ofmonomorphic and dimorphic cleavage sites can
be expected to approximate two independent Poisson distri-
butions. Thus the large-sample variance estimate is

V(Pi a) V(k) + [a(-k]v(m - k).

Differentiating Eq. 8 and using the observed values of k and
m - k as estimators of their respective variances yields

A 4km2 - 4k m
4P2 -k2m

= 1k(1- k2) [18]

P2/k.

This variance applies when k is determined directly, or when
it comes from one ofthe asterisk-labeled entries ofTables 1 and
2.
The variance calculated by Nei and Li (8) for this situation

is not a measure of the precision with which we know p for a
particular pair ofgenomes. Instead, it is the variance that would
result if"repetition" ofthe experiment meant returning the two

genomes to their common ancestral state and allowing them to
diverge again at random. To see the difference between these
two variances, note that under Nei and Li's repetition scheme,
we expect k and m - k to be negatively correlated because the
number of common ancestral restriction sites is assumed con-
stant. However, with the scheme suggested here, the number
of monomorphic, dimorphic, and noncleavage sites come from
a trinomial distribution with index L - j + 1. Because the great
majority of sites are noncleavage, the covariance between
monomorphic and dimorphic cleavage sites will be negligible,
and independent Poisson distributions will be approximated.

Genetic Variability. Another way to define repetition of the
experiment applies when one estimates genetic variability
within a population. The experiment is repeated by drawing
another random sample of n homologous segments from the
population and treating them with the same set of enzymes.
Thus ci will be binomially distributed with parameter iri and
index n. It is necessary to assume linkage equilibrium in the
population so that these binomial distributions will be inde-
pendent. Ofcourse, this assumption can neverbe precisely true
because each site overlaps with 2j - 2 of its neighbors. How-
ever, for most real data, L >> m so that the probabilty of over-
lapping cleavage sites is negligible.
The standard large-sample approximation to the variance of

p may be written as
12 2

aV m-k)V(M -k) + ki1(c)[~ Ia
+ 2[ d(d-k) a Cov(c,m-k), [19]

in which all derivatives are evaluated at the mean values, Tm,
c, and k. To determine the variances and covariances, let ai be
a random variable that takes the value 1 if ci = n, and 0 oth-
erwise. Now, m - k = ia,, and by our assumption of linkage
equilibrium,

Similarly,

and

V(m - k) = EV(aj = >i (1 - ei )
i i

V(c) = EV(cj = Jnslr.l - lre
i i

Cov(c, m - k) = > Cov(ci, ad = > nwi' (1 - rD.
i i

Making these substitutions and differentiating in Eq. 6 leads
to

V(P) = E( l(,-(

+ n(mh - k~),il -1rih(m- k_ 2w-i)). [20]

Finally, the maximum likelihood estimate ofV(O) is obtained by
replacing mh, e, k, and 'ri by their respective maximum likeli-
hood estimators, m, c, k, and c/n. For computational purposes,
note that there are L - j + 1 terms in the summation in ap-
proximation 20, but that only k of them, corresponding to the
polymorphic sites, are nonzero.

The situation is somewhat more complicated when several
endonucleases with various lengths of recognition sequences
are involved. In this case, j must be treated as a random variable
because it is an average value weighted by the numbers of cuts
which are themselves random variables. Therefore approxi-
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mation 20 should be expanded to include variance and covari-
ance terms involvingj. In practice, however, these terms will
be negligible relative to the rest of the expression, and may be
safely dropped. Thus, approximation 20 may still be used with
j as the appropriate weighted average treated as a constant.
A similar procedure may be applied to the heterozygosity.

Thus the large-sample approximation is
( \ 2

acH

Differentiating Eq. 11 and substituting the observed value of
c, leads to the maximum likelihood estimator,

_ _ ~~2

>ci(n - c [2cci - c]2
V(H) = j2n(n - 1)2c4 [21]

As in the previous case, the average length of the recognition
sequence may be treated as approximately constant when there
are several different endonucleases.

APPLICATIONS AND DISCUSSION
Genetic Variability. Brown (5) studied human mitochondrial

DNA in 21 individuals with seven tetranucleotide restriction
enzymes. From his tables 2 and 3, we see that there were m
= 244 cleavage sites, of which k = 45 were polymorphic. The
total number of cuts was c = 4672, and the frequency of poly-
morphism may thus be estimated at P = 0.0264 from Eq. 6 with
standard error 0.0015 from approximation 20. Note that a very
similar estimate of p (0.0231) is obtained from approximation
7 by the method ofEwens et at (11). Under the Wright-Fisher
model with neutral mutations, these estimates correspond to
o = p/ln(21) _0.0087. It should be noted thatfor mitochondrial
DNA, 0 must be defined as Nu rather than 4Nu because each
individual may be considered haploid, and only females
reproduce.
We may also use Brown's data to estimate heterozygosity. Of

course there are no true heterozygotes for mitochondrial DNA,
but H is still meaningful as a measure of genetic variability.
Thus, using Brown's tables 2 and 3 to obtain all ci values for
polymorphic sites, we have H = 0.0034 with standard error
0.0004 from Eqs. 11 and 21. This value is close to Nei and Li's
(8) measure of "nucleotide diversity" as calculated by Brown.
The latter is an unweighted average of all pairwise estimates of
p, and is expected to be close to H in their model.
From comparisons between observations like these and anal-

ogous measurements for nuclear DNA, several authors (2, 8)
have noted that mitochondrial DNA tends to be more variable.
For example, the value of 0 calculated above for human mito-
chondria is approximately 35 times the estimate ofNu by Ewens
et aL (11) from Jeffreys's (3) restriction endonuclease study of
human chromosomal DNA. The only apparent exception comes
from the study by Shah and Langley (15), who found that 6 was
approximately equivalent in Drosophila mitochondrial and nu-
clear DNA. These authors took into account the factor of2 from
haploidy, but they failed to consider the other factor of 2 re-
sulting from cytoplasmic inheritance. With this correction, the
data of Shah and Langley become qualitatively consistent with
the other studies.

Estimating k from Fragment Lengths. The maximlm like-
lihood method for estimating k may be applied to the data in
figure 1 of Avise et al. (4), in which mitochondrial DNA from
gophers produced eight fragment-length patterns when di-
gested with the endonuclease HincII. For each of the 24 pairs
of patterns, Table 2 provides an estimate of the number of di-
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morphic cleavage sites. For all but 10 ofthese comparisons, this
procedure yields the exact value ofk. The comparison ofpattern
"M" with "O" is one example in which k is not known exactly.
Here F = 14, G = 4, and the only allowable values of k are 2
with likelihood 0.714, and 4 with likelihood 0.071. Therefore,
the estimate is k = 2 as given in Table 2, which corresponds to
p = 0.036 from Eqs. 8 and 13. The alternative procedure sug-
gested by Nei and Li (8) yields for this case k = 2.47 and thus
I = 0.044.

Genetic Divergence. Ideal data for demonstrating the use
of Eqs. 8 and 18 for estimating genetic divergence were pro-
vided by Shen et aL (16), who obtained the entire sequence of
human Ay and Gy globin genes and the surrounding areas. This
region contains a tandem duplication of approximately 5000
bases that have diverged in evolutionary time. As a thought
experiment to demonstrate the method, the cleavage sites of
each of 18 hexanucleotide restriction enzymes were read di-
rectly from the sequence. Any two cuts were considered ho-
mologous if their separation fell within ±50 nucleotides of the
length of the duplication. The procedure yielded m = 45 and
k = 32, and the estimated frequency of mismatches was f) =
0.092 from Eq. 8. This estimate agrees well with the true value,
0.094, obtained directly from the sequence. The standard error
from Eq. 18 was 0.016.

These data also illustrate an important defect inherent in the
use of these techniques, which deal only with base substitu-
tions. By comparing the Ay and GY sequences, it was clear that
much ofthe divergence was due to small insertions or deletions
in addition to base substitutions (16). In extreme cases, such
changes can result in sufficient alterations of fragment lengths
that some homologous sites will appear to be nonhomologous.
This situation would result in p and H being overestimates.
However, despite this defect, the use of restriction endonu-
cleases along with the empirical estimation procedures pre-
sented here might prove to be a useful method for studying
genetic differences in regions of the genome not accessible in
other ways.
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