1	BMC Microbiology 1536376629675241
2	Physiology of deletion mutants in the anaerobic β -myrcene
3	degradation pathway in Castellaniella defragrans
4	
5	- Additional Material -
6	
7	
8	Frauke Lüddeke
9	Email: <u>flueddeke@web.de</u>
10	
11	Aytac Dikfidan
12	Email: aytac.dikfidan@mpimf-heidelberg.mpg.de
13	
14	Jens Harder*
15	corresponding author, Email: jharder@mpi-bremen.de
16	
17	Dep. of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359
18	Bremen, Germany

19

20 Additional Material

21 Determination of antibiotic sensitivity and isolation of spontaneous antibiotic-resistant 22 strains of *C. defragrans* 65Phen.

- 23 Endogenous antibiotic resistance strains of *C. defragrans* 65Phen was determined by growth
- 24 on solid medium containing ampicillin (50 μg/mL), chloramphenicol (20 μg/mL), gentamycin
- 25 (15μg/mL), kanamycin (50 μg/mL), neomycin (100 μg/mL), rifampicin (150 μg/mL),
- 26 spectinomycin (100 μ g/mL), streptomycin (50 μ g/mL), and tetracycline (20 μ g/mL). Stock
- 27 solutions were prepared according to standard instructions [58]. After liquid cultures
- 28 containing chloramphenicol (5 μg/mL), neomycin (25 μg/mL), rifampicin (150 μg/mL),
- 29 spectinomycin (15 μ g/mL) or tetracycline (20 μ g/mL) showed growth of
- 30 *C. defragrans* 65Phen, they were further incubated at antibiotic's work concentration and
- 31 isolated on solid minimal medium. Dilution-to-extinction series of the wild type strain were
- 32 used to inoculate solid minimal medium plates in presence or absence of the appropriate
- 33 antibiotic under anoxic conditions for 4-5 days.
- 34 C. defragrans RIF2 was propagated without selection pressure in antibiotic-free medium for
- 35 five passages with inocula of 10% (v/v). Afterwards plating on solid medium with and
- 36 without rifampicin revealed that the resistance was preserved in 78% of the bacterial cells
- 37 forming colonies.

38 Additional Table 1 - Growth of *C. defragrans* strains 65Phen and RIF1 - RIF4.

- 39 Optical density increase of cultures of *C. defragrans* strain 65Phen (in the absence of
- 40 rifampicin) and four rifampicin-resistant mutants C. defragrans RIF 1-4 (in the presence of
- 41 rifampicin) grown with 4 mM monoterpene and 10 mM nitrate. The inoculum size was 10%
- 42 (v/v). Incubation took place for 28 d.
- 43

	Maximum OD ₆₆₀ C. defragrans strains				
Substrates	65Phen	RIF 1	RIF 2	RIF 3	RIF 4
β-Myrcene	0.35	0.48	0.48	0.39	0.42
(+)-Limonene	0.68	0.55	0.61	0.65	0.57
(+)-α-Terpineol	0.22	0.19	0.14	0.16	0.21
(+)-2-Carene	0.42	0.24	0.28	0.30	0.28
(+)-3-Carene	0.27	0.24	0.34	0.28	0.27
(-)-α-Pinene	0.38	0.38	0.30	0.37	0.38
(+)-Sabinene	0.40	0.40	0.46	0.43	0.41

44

45 Determination of the transconjugation frequency with E. coli S17-1 pBBR1-MCS2

The donor strain, an overnight culture of E. coli S17-1 carrying pBBR1-MCS2, and the 46 recipient C. defragrans RIF were grown to late exponential phase and were mixed in several 47 48 ratios (1:1, 1:5, 1:10) in a total volume of 20 µL and spread as a single drop on minimal agar. 49 After incubation for 3 h, 8 h or 24 h at 28 °C under oxic conditions the bacteria were 50 resuspended in 1 mL liquid minimal medium. Dilution-to-extinction series were streaked out 51 onto solid minimal medium supplemented with kanamycin and rifampicin and anaerobically 52 incubated at 28 °C for four days. To determine the transconjugation frequency, donor and recipient strain were plated onto solid medium with and without antibiotics. Growth of E. coli 53 54 S17-1 containing pBBR1MCS-2 was inhibited in the presence of rifampicin as well as growth 55 of C. defragrans RIF in the presence of kanamycin. But transconjugants C. defragrans RIF 56 carrying pBBR1MCS-2 grew in the presence of rifampicin and kanamycin. The appearance of 57 pBBR1MCS-2 in transconjugants was confirmed by PCR as well as plasmid DNA isolation 58 and analysis of restriction digests. Optimal conjugation conditions were observed at donor-to-59 recipient ratios of at least one-to-one and a mating time of 8 h (Additional Table 2). 60

61 Additional Table 2 - Conjugation frequencies (FC).

- 62 Conjugation frequency (F_c) of plasmid transfer of pBBR1MCS-2 from *E. coli* S17-1 into
- 63 C. defragrans RIF. Frequencies are given as tranconjugants cells /donor cells for experiments
- 64 with $5.6 \ge 10^8$ donor cells. The standard variation was always below 15 %.
- 65

	3 h mating		8 h mating	
Recipient: donor ratio	Transconjugants [CFU/mL]	F _C	Transconjugants [CFU/mL]	F _C
1:1	3.22×10^3	5.76 x 10 ⁻⁶	6.36 x 10 ⁴	1.14 x 10 ⁻⁴
1:5	1.83×10^3	3.26 x 10 ⁻⁶	9.92 x 10 ⁴	1.77 x 10 ⁻⁴
1:10	3.24×10^3	5.78 x 10 ⁻⁶	9.65 x 10 ⁴	1.72 x 10 ⁻⁴

66

67 Assessment of plasmid stability under non-selective conditions.

The stable maintenance of plasmid pBBR1MCS-2 in *C. defragrans* 65Phen was assayed by anaerobic growth of transconjugants in denitrifying liquid medium with α-phellandrene as substrate without any selection pressure. The cultures were transferred five times in nonselective media (for 48 generations) and the colony-forming units (CFU)/mL were determined by plating appropriate dilution series in the presence or absence of kanamycin revealing a resistance in over 99% of the colonies. This demonstrated the stable maintenance of pBBR1MCS-2 in *C. defragrans* RIF.

Additional Figure 1 - Physical and genetic map of the mobilizable suicide vector pK19mobsacBΔgeoA.

- 78 Physical and genetic map of the mobilizable suicide vector pK19mobsacB Δ geoA. The
- 79 narrow-host range vector lacks the capability of autonomous replication in
- 80 Betaproteobacteria [58] and features selection marker genes encoding for kanamycin
- 81 resistance (Km^R) and for sucrose sensitivity (*sacB*) are indicated in black. Genes encoding for
- 82 the 5' and 3' flanking regions of the *geoA* are indicated in grey (ORF29, ORF30, ORF32).
- 83 OriT = origin of transfer replication. Restrictions sites used for cloning are marked.
- 84
- 85

87 Additional Figure 2 - Genetic map of contig FR6694457.2

- 88 An annotation of open reading frames, including ORF 18 (geoB, geranial dehydrogenase),
- 89 ORF 26 (*Idi*, linalool dehydratase isomerase) and ORF 31 (*geoA*, geraniol dehydrogenase).
- 90 P indicates potential promoter regions, S Shine-Dalgarno sequences and T termination
- 91 structures.
- 92

Additional Figure 3 - Genetic characterization of *C. defragrans* ∆*Idi* and *C. defragrans*∆*geoA*.

- 97 Electropherogram of PCR products obtained with genomic DNA from C. defragrans strains
- 98 65Phen, Δldi , Δldi comp, $\Delta geoA$ and $\Delta geoA$ comp. The *ldi* deletion was confirmed with the
- 99 primer pair ORF25 401 F & ORF27 2005 R that yielded in the case of the wild type a 2463
- 100 bp amplicon, and in the case of the *ldi*-deletion a 1269bp amplicon. The *geoA* deletion was
- 101 detected with the primer pair ORF30_30967_F & ORF32_32822_R; the wild type yielded a
- 102 1904 bp amplicon, while the amplicon of C. defragrans $\Delta geoA$ is shortened to 740 bp. M =
- 103 GeneRuler[™] 100 bp Plus DNA Ladder (Fermentas).

105

106Additional Figure 4 - Transcriptional characterization of C. defragrans ΔIdi and C.107defragrans $\Delta geoA$.

108 As template for transcriptional analyses served cDNA obtained with gene-specific primers.

109 RT-PCR was performed with primers annealing on A) *ldi*, B) ORF25 and ORF27, C) *geoA*,

and D) ORF30 and ORF32. The transcriptional analysis revealed presence of the genes in the

- 111 wild type and the complemented mutant, but their absence in the prevailing deletion mutant
- 112 *C. defragrans* Δldi or *C. defragrans* $\Delta geoA$ (A, C). The expression of 5'- and 3'-flanking
- 113 regions of the *ldi* (B).or *geoA* (D) was similar to that of the wild type. All negative controls,
- 114 including a RT-PCR without reverse transcriptase, did not show the formation of amplicons
- 115 (data not shown). $M = GeneRuler^{TM}$ 100 bp Plus DNA Ladder (Fermentas).
- 116

118