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ABSTRACT  Whenever experimental data can be simulated
according to a model of the physical process, values of physical
parameters in the model can be determined from experimental
data by use of a nonlinear least-squares algorithm. We have used
this principle to obtain a general procedure for evaluating molec-
ular parameters of solutes redistributing in the ultracentrifuge
that uses time-dependent concentration, concentration-differ-
ence, or concentration-gradient data. The method gives the pa-
rameter values that minimize the sum of the squared differences
between experimental data and simulated data calculated from
numerical solutions to the differential equation of the ultra-

centrifuge.

Equations that are part of a model thought to describe a physical
process may incorporate constants representing unknown phys-
ical parameters characteristic of the system under study. So-
lution of the inverse problem—determination of unknown pa-
rameters from experimental data—can be a difficult task if the
model is complex. Whenever there exists a simulation algorithm
incorporating a model, initial conditions, and estimates of un-
known parameters to simulate experimental data, the inverse
problem can be solved by using a nonlinear algorithm to de-
termine the values of the unknown parameters that minimize
in some (e.g., least squares) sense the difference between ex-
perimental and simulated data.

We have used this principle to obtain a generalized least-
squares solution to the inverse problem of the ultracentrifuge.
Time-dependent ultracentrifuge data for normally considered
models can be simulated by using the finite-element solution
of systems of differential equations of the ultracentrifuge pre-
sented by Claverie, Dreux, and Cohen (1-3). We report here
that this simulation algorithm can be combined with a modified
Gauss—Newton nonlinear least-squares algorithm (4, 5) to pro-
vide a general method for determination of least-square esti-
mates of unknown parameters from time-dependent experi-
mental ultracentrifuge data. Either concentration, concentration-
difference, or concentration-gradient data may be used.

The general procedure can be summarized as follows. Let
P be a vector whose elements are estimates of the unknown
parameters, and let experimental data be expressed as a vector
Y whose elements are the data values at various times and radial
positions. A corresponding vector of simulated data Z(P) can be
calculated by using the simulation algorithm. The goal of the
nonlinear least-squares algorithm is to find P, the value of P that
minimizes the residual sum of squares (RSS),

!
RSS = > w [V, - Z(P)L",
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where [ is the length of Y (the number of experimental obser-
vations) and w is an optional vector of case weights. Once P has
been found, the applicability of the chosen model can be eval-
uated from the SD of the simulated data from the experimental
data.* If the SD is significantly larger than what can be attrib-
uted to experimental error, then the model is inappropriate.
Alternative physically reasonable models often all fit the data
within experimental error, and the correct choice would entail
further study. Discussion of this likely possibility is beyond the
scope of this paper.

METHODS

Model Equations for Simulation of Data. The sedimentation
of a broad range of systems normally encountered in ultracen-
trifugal analysis can be adequately described by systems of par-
tial differential equations of the form (6)
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where the subscript k refers to solute k, C is the solute con-
centration, ¢ is the time, r is the radius from the center of ro-
tation, J is the solute flux, f is a “source term”, s is the sedi-
mentation coefficient, w is the angular velocity, and D is the
diffusion coefficient. The source term f represents a standard
kinetic expression for the rate of change of C due to any chemical
reactions.

The sedimentation and diffusion coefficients are generally
nonconstant and can be represented in the forms s = s, (1 —
€)and D = Dy(1 — 7), where € and 1 are functions that describe
the variation of s and D from their “basic” values s, and D, (3).
This formulation is convenient for the finite-element numerical
solution. Once the functional forms of s and D are specified, €
and 7 are readily calculated from ¢ = 1 — s/spand n =1 —
D/D,. Sedimentation and diffusion coefficients may be non-
constant due to such effects as nonideality, changes in solution
density and viscosity because of solute redistribution, or
changes in the effective partial specific volume or frictional ratio
of a solute due to changes in pressure or solution composition.
Any such effects, singly or in combination, may be incorporated
into the functions € and 7. Rate constants appearing in f may
also be nonconstant. We will assume that ¢, 7, and f are func-
tions of the concentrations of one or more of the solutes or of
o and r due to pressure effects.

A differential equation in the form of Eq. 1 applies to each
solute present in the ultracentrifuge cell. However, solutes that
are not of interest (e.g., low molecular weight solutes that do
not contribute to the experimentally observable data) can be

*SD = [RSS/(! — p)w]"?, where p is the number of unknown param-
eters and © = (1/]) =!., w;, which equals 1 if no weighting is used.
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ignored if they do not affect the redistribution of solutes that
are of interest through f, &, or 7 terms. A system of such equa-
tions that is thought to describe an experimental system can be
considered a model of that system.

Solutions of such systems of differential equations are the
concentrations of each solute as a function of radius and time,

Crthr,<r=<ryandt =t,

where r,, and r,, are the radii of the meniscus and the bottom
of the ultracentrifuge cell, respectively. To be uniquely deter-
mined, such solutions must conform to certain boundary and
initial conditions imposed by the experimental design. The
boundary conditions are J(r,,,t) = J(r},t) = 0, describing the fact
that no solute can cross the meniscus or cell bottom. The initial
condition is C(r,t5) = Cq(r), the initial concentration distribu-
tion. Such solutions, calculated by using a specified set of pa-

rameters and initial conditions, can be used to obtain simulated -

experimental concentration, concentration-difference, or con-
centration-gradient data at-specific times and radii, which can
be compared to actual experimental data.

An analytical solution of Eq. 1 has been found only for the
simplest case [i.e., f =& = 7 = 0 (7, 8)], and that solution is
so complex that it is seldom used. A number of methods to cal-
culate numerical solutions have been developed in the past two
decades. Some of these methods are applicable only to some
of the experimental situations that can be described by Eq. 1
(9-12), while others appear capable of handling the general case
(1-3, 13). [For a discussion of simulation procedures other than
the finite-element method, see Cox (12)]. Any method that is
applicable to the chosen model of the experimental system can
in principle be used in the simulation algorithm. Desirable fea-
tures of a numerical method are accuracy, efficiency, generality,
ease of application, and ease of adaptability to different model
systems. On the basis of these criteria, we have chosen to use
the finite-element method of Claverie et al. (1-3). This method
is capable of simulating data for any model system based on Eq.
1.

Because initial conditions must be specified; the experiment
to be simulated must be set up such that the initial concentration
distributions for each solute are either known or can be esti-
mated from experimental data measured at time ¢, and the cur-
rent estimates of any necessary unknown parameters. If the ¢,
data are concentration difference or gradient, conversion to
concentration data requires knowledge of the concentration at
some point in the cell, which would have to be considered an
additional unknown parameter if it has not been determined
separately. The initial time ¢, may be taken as any convenient
time—when the rotor starts to spin, when the rotor attains con-
stant speed, or when a layering occurs—as long as the initial
conditions can be specified. For example, with a kinetically
controlled self-associating system (i.e., interactions too slow to
maintain chemical equilibrium as solutes redistribute), the con-
centration of each solute when the rotor starts spinning can be
calculated from the total concentration and the equilibrium con-
stants for the associations. However, any subsequent redistri-
bution of solutes disturbs the equilibrium, and so concentra-
tions of individual solutes can no longer be calculated from the
total concentration distribution.

An associating system in rapid equilibrium (i.e., interactions
are sufficiently rapid to maintain chemical equilibrium as sol-
utes redistribute) may be conveniently described by a single
equation in the form of Eq. 1, obtained by adding the individual
differential equations for the associating solutes. Then C, f, and
J in Eq. 1 are replaced by their aggregate values Cy, fr, and Jr.
For example, for a monomer-dimer-. . .~m-mer system
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where K; is the monomer—j-mer equilibrium constant (K, = 1)
and § and D are the average sedimentation and diffusion coef-
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The second equality of Eq. 4 is valid only when each 9K ,/dr
= 0 (12), and thus an alternative formulation is required if the
equilibrium constants are pressure dependent. Although §is the
weight-average sedimentation coefficient at Cy, D has no such
simple physical interpretation. Because C; can be determined
from C by finding the positive root of Eq. 2, it is apparent that
§ and D are functions of C; and thus a pressure-independent
self-associating system in rapid equilibrium is mathematically
equivalent to a single noninteracting solute that has a complex
concentration dependence of s and D (6).

The Nonlinear Least-Squares Algorithm. A number of al-
gorithms to find P are available, all of which must be supplied
initially with estimates of the unknown parameters that are it-
eratively corrected until they converge to P. All must repeat-
edly evaluate the vector function Z(P), which requires signifi-
cant computer time, and so an algorithm that converges with
as few function evaluations as possible is to be preferred. How-
ever, some algorithms that normally converge rapidly are more
likely to fail to converge, particularly for poor parameter esti-
mates, than some of the slower algorithms that offer stronger
guarantees of convergence. In addition, an algorithm that allows
the setting of bounds on the values that P may assume should
be used so that nonsensical parameter values, such as negative
diffusion or rate constants, can be avoided. Besides being an
aid in imposing physical realities on the model, setting of
bounds precludes the evaluation of Z(P) when, due to overcor-
rections, P contains parameter values that would cause com-
putational errors and possibly terminate program execution.

The modified Gauss—Newton algorithm we are using achieves
areasonable compromise in meeting the above demands. It in-
corporates limited step halving to improve convergence and
stepwise regression to constrain parameters within bounds (4).
The required derivatives of Z with respect to each unknown
parameter are calculated by increasing the jth element of P by
a small quantity AP;t to obtain P’ and then using Newton's for-
ward difference rule,

9L _Z(¥') - Z({P)

1 AP, should not be so small that significant accuracy is lost due to round-
off error.
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Therefore, p + 1 evaluations of Z per iteration are required (not
counting any step halvings), where p is the number of unknown
parameters. Although this algorithm has performed well, we are
investigating other nonlinear least-squares algorithms, such as
DUD (Doesn’t Use Derivatives), which requires only one eval-
uation of Z per iteration (14).

The Finite-Element Numerical Solution. Claverie and his
associates have presented in some detail the derivation of the
finite-element numerical solution of systems of Eq. 1 (1-3).
Basically, the finite-element solution uses a “variational for-
mulation” of Eq. 1 that allows implicit incorporation of bound-
ary conditions and elimination of second derivatives. Functions
of r (C, f, €, and 7) are approximated by continuous piecewise-
linear interpolate functions that equal the original functions at
N + 1 equally spaced radial positions, where N is the number
of elements in the space discretization. Time discretization is
accomplished by a finite-difference approximation. This leads
to a system of N + 1 linear equations in matrix form for each
solute (Eq. 5 below). These equations can be used to calculate
the concentrations of each solute at the N + 1 radial positions
at time ¢ + At from those at time ¢. Partly as a convenience to
our readers and partly because of subscripting errors in one of
the original references (3), we briefly present below the finite-
element equations and matrix elements.

The time coordinate ¢ is divided into intervals of length At,
and the space coordinate r is divided into intervals of length h
= (r, — r,»)/N. For each solute, the functions C, f, ¢, and 7
are then represented by the vectors C,, f,, €, and m, whose
elements are the values of the functions at radii r,,,, r,,, + h, ,,
+ 2h, ..., ry at time &, + nAt, where n is an integer. Starting
with n = 0 and the initial conditions (Cgs for each solute), C,, ;s
are recursively calculated from the C,s by solving, for each sol-
ute, a matrix equation of the form

(B + AtD,A' — Ats,w?A%C, ., = B(C, + AH,)
+ AtDyUCY + VCY + WC¥) — Atsg®A%CA  [5]
where B, A!, A%, U, V, and W are matrices whose elements

depend only on r,,,, r;,, and hand CY, CY, C¥, and C* are vectors
that are calculated at each iteration as follows:

C/=m)i(Cisy (=1..,N)
C/'=@)(C) (=1.. N+
C=Mir(Ci (=1...,N)
Cl=(€)(C) (i=1..,N+1.

The vectors f,, €, and m,, are calculated at each iteration from

the C,s.

A', A%, B, and V are tridiagonal N + 1 by N + 1 matrices.
Uand W are N + 1 by N matrices that contain only 2 N nonzero
elements. Letr;, =r,, + (i — 1)hfori =1, ..., N + 1. Then
the matrix elements are calculated as follows:#

Al =(r/R) + Y2 AL =2r/h (=2 ..,N
Azlv+1,N+1 = (ry+1/h) — 1/2

A=Al =(-r/R)+1/2 (=2 ...,N+1])
A} = (=r1/2) — (rih/3) - K/12;

Al =-2rh/3 (=2, ..,N

¥ An apparent subscript error leads to incorrect specification of the A2,
U, V, and W, matrix elements by Calverie (3).
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Ay iiner = (Ta/2) = (rye1h/3) + B¥/12

AL = (%2 — @rh/3) + k¥4 (=2 .., N+1)
Al = (—r2/2) — @rh/3) - W/4  (=1,..,N)
B, , = (r}h/3) + h*/12; B, = 2r}/3
Byi1y+1 = (rne1h/3) — B¥/12
B, ,=B,_,,=(rh/6)-h*/12 (i=2 .. ,N+1

Vi1 =(r/2h) +1/6;V,,=r/h (=2, ...,N)

Vnen+1 = (rv+1/2h) — 1/6

Upri=—Uy= V= (/2R +1/6  (=1,...,N)
Wy=-Wupi=-Vya=0@/20+13 (=1..N).

All other matrix elements are zero, allowing great saving in com-
puter storage space.

The right side of Eq. 5 can be reduced to a single vector R,,
by performing the indicated operations. The expression in pa-
rentheses on the left side of the Eq. 5 reduces to a tridiagonal
matrix M, which needs to be recalculated only if At or  change.
The resulting equation, MC,,,; = R, is conveniently solved for
C, .1 by a gaussian elimination procedure that requires only 3(N
+ 1) multiplications and 2(N + 1) additions (15). Note that use
of an “operator” matrix (1-3) to solve the matrix equation is
much less efficient because (N + 1) multiplications and N(N
+ 1) additions are required to multiply an operator and a vector,
and storage of the operator requires (N + 1)* locations.§ If f,
g, and 7 are all zero, then the right side of Eq. 5 simplifies to
BC,. One of the convenient features of the finite-element al-
gorithm is that the additional complications of nonzero f, ¢, or
7 are handled simply by additional terms on the right side of
Eq. 5.

The effect of varying the rotor speed can be handled in either
of two ways. The current value of  can be substituted into Eq.
5 at each iteration, requiring the recalculation of M. Altematelz,
s@® can be treated as a single function. Then, € = 1 — (s0?/
sow3) and w in Eq. 5 is replaced by wy, a constant. The latter
method is computationally more rapid if € is non-zero anyway,
otherwise the two methods are approximately equally efficient.

The accuracy of the calculations depends on h and At, and
calculated solutions converge to the true solutions as h and At
approach zero (neglecting roundoff error). In general, large
dC/ar values require small h, and large 8C/dt values require
small At. The values of h and At can be selected independently
and can easily be changed during the simulation in response to
changes in the magnitudes of the gradients. Checks on the cor-
rectness of our simulation algorithm have been reported pre-
viously (15). We have added checks for nonzero f, ¢, and 7,
including obtaining the correct concentration distribution at
sedimentation equilibrium and determining the weight average
s from sedimentation velocity runs.

RESULTS AND DISCUSSION

Our method is illustrated by the following applications, in which
experimental concentration data have been simulated and pro-
vided as input to the Gauss—Newton algorithm. We simulated
the effects of experimental error by adding normally distributed

§ With the APL computer language, the operator is more efficient for
N = 400 if storage space is not a problem because of the relative ef-
ficiency of matrix multiplication in this language compared with the
looping required to do the gaussian elimination.
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Table 1. Accuracy of estimates of s and D of an ideal protein
obtained from simulated experimental concentration data with
superimposed random error of various SDs
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Table 2. Accuracy of estimates of four unknown parameters for
an ideal monomer-dimer system in rapid equilibrium obtained
from simulated data with various error levels

Percent error in Percent error in
SD of error __ parameters SD of error parameter

in data, mg/ml s D Error set* Data used; hr* in data, mg/ml oo D, D, K,

0.0025 -0.1 -04 1 0,4 0.0025 +1.3 +16 -35 -9
0.010 -0.5 -14 1 0,4 0.0025% +29 -13 -14 -23
0.025 -13 -34 1 0,6 0.0025 +42 -40 +6.0 -36

0.050 -25 -6.6 1 0,4,8,12 0.0025 +1.0 -06 +0.2 -9

0.025 +1.1 -0.3 2 0,2 4,6t 0.0025 -06 +1.1 -09 +8
0.025 -04 -1.2 3 0,2,4,6 0.005 -12 +22 -18 +17
0.025 -0.2 -0.3 4 0,2,4,6 0.01 -24 +44 -33 +36
Concentration distributions consisting of 51 equally spaced readings g’ g’ :’ g’ g’ ig ggi, Igg Ii? :;3 :g?

taken at 2 and 4 hr were calculated by using the following parameters:
§=5.73S,D = 5.46 x 10”7 cm?/sec, rotor speed = 16,150 rpm, r,,
=6.5cm, r, = 6.8 cm, Cy = 0.8 mg/ml, A = 60 um, and At = 20 sec.
* Different random error sets give different results.

random number sets with various SDs to the simulated data.
Table 1 shows the accuracy of estimates of s and D obtained for
an ideal protein from concentration distributions measured at
2 and 4 hr during a moderate speed (o = sw?/D = 3 cm™?)
run. The initial protein concentration of 0.8 mg/ml was chosen
to give the maximum readable fringe density (=400 fringes per
cm) at the cell bottom at sedimentation equilibrium using in-
terference optics. A SD of 0.0025 mg/ml roughly corresponds
to the level of accuracy attainable with a well-aligned interfer-
ence optical system (0.01 fringes). In our laboratory, we have
found that the SD for absorption optics is typically 0.005-0.01.
If the initial concentration had been chosen to obtain A = 1 at
the cell bottom at equilibrium, then this level of error would
yield parameter estimates of about the same accuracy as those
given in Table 1 for SDs of 0.025-0.05 mg/ml. For initial esti-
mates within a factor of 2 of the correct values, convergence to
the least-square values of s and D to four significant figures re-
quired, at most, five iterations of the Gauss—Newton algorithm.
Even when initial estimates were off by a factor of 10, conver-
gence required at most 10 iterations.

Table 2 shows the accuracy of estimates of four unknown
parameters for an associating monomer—dimer system in rapid
equilibrium with constant sedimentation and diffusion coeffi-
cients. C, was again selected to give the maximum readable
fringe density at the cell bottom at sedimentation equilibrium.
Note that o, (s,w?/D,) is not considered an additional unknown
because it is assumed to be twice o,. As intuitively expected,
K, and o, are highly negatively correlated (asymptotic corre-
lation coefficient of —0.996). As the number of unknown pa-
rameters increases, the accuracy of parameter estimates can be
expected to decrease, especially for highly correlated parame-
ters, and it is therefore helpful to make reasonable assumptions
that reduce the number of unknown parameters.

When solutes are in rapid equilibrium, determination of in-
dividual association and dissociation rate constants is meaning-
less and only equilibrium constants can be determined. Equi-
librium constants do not appear in f terms but can be introduced
as unknown parameters by either of two methods. The differ-
ential equations for each solute in the equilibrium can be
summed, as previously discussed, so that equilibrium constants
appear directly in Eqs. 3 and 4 and rate constants appearing in
f terms drop out. Alternatively, for each equilibrium constant,
either the association or dissociation rate constant can be fixed
at some value large enough to be compatible with the assump-
tion of rapid equilibrium but not so large that an extremely small
At would be required for sufficient accuracy in the simulation.

Concentration distributions for various times consisting of 51
equally spaced readings were calculated by using the following param-
eters: 0; = 03/2 = 2 cm™2 (13,187 rpm), D, = 5.46 x 10~ cm?/sec, D,
= 3.76 x 10”' cm?/sec, K, = 1.6 (mg/ml)%, r,, = 6.5 cm, r, =6.8cm,
Co = 0.7 mg/ml, h = 60 um, At = 20 sec.

* Times to reach 90 and 99% of sedimentation equilibrium, as deter-
mined by calculation of K, from the meniscus concentrations, were
21 and 29 hr, respectively.

t A different random error set was used than for the above line.

$When these data and initial parameter estimates of o; = 1.5 cm™2,
D; = 6.01 x 1077 cm?/sec, D, = 4.77 x 10~7 cm?/sec, and K, =04
(mg/ml)~! were used, the parameters converged to their final values
to four significant figures in 15 iterations of the Gauss-Newton al-
gorithm with a total of 20 step halvings.

The other rate constant is then considered an unknown param-
eter, and the equilibrium constant is calculated as the appro-
priate ratio of the fixed rate constant and the value of the un-
known rate constant determined by the nonlinear algorithm.

Computer costs are dictated primarily by the number of re-
peated simulations. The total number of simulations is equal to
I(p + 1) + H + 1, where I is the number of iterations of the
Gauss-Newton algorithm, p is the number of unknown param-
eters, and H is the total number of step halvings. The cost per
simulation is proportional to N, to the number of At time periods
simulated, and to the number of solutes considered in the
model. Each simulation for the problem in Table 1 required
~1.0 sec of central processing unit time. Simulations that in-
clude effects such as solute interactions or nonconstant s, D, or
® result in a slight to moderate increase in the cost per
simulation.

In conclusion, we emphasize that the solution of the inverse
problem presented here has the very desirable property of fit-
ting parameters to experimental data in a manner such that they
theoretically converge to the exact least-square values as At and
h become small. Of additional importance is the fact that the
finite-element method is ideally suited to simulating data for
many other processes that involve solute fluxes, such as elec-
trophoresis and chromatography (3). With only slight modifi-
cation, the program developed here for least-squares estimation
of physical parameters from ultracentrifuge data can be used to
obtain parameters from such processes as well.
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Y This refers to the time for double-precision FORTRAN calculations
on the IBM VM-370/168 system at Cornell University, Ithaca, NY.
A majority of the computations were actually performed on a Floating
Point Systems 190L Array Processor that uses a precision intermediate
between single and double.
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