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1 Introduction

In this manual, we will show how to use the methylKit package. methylKit is an
R package for analysis and annotation of DNA methylation information obtained
by high-throughput bisulfite sequencing. The package is designed to deal with
sequencing data from RRBS and its variants. But it can potentially handle
whole-genome bisulfite sequencing data if proper input format is provided.

1.1 DNA methylation

DNA methylation in vertebrates typically occurs at CpG dinucleotides, however
non-CpG Cs are also methylated in certain tissues such as embryonic stem cells.
DNA Methylation can act as an epigenetic control mechanism for gene regula-
tion. Methylation can hinder binding of transcription factors and/or methylated
bases can be bound by methyl-binding-domain proteins which can recruit chro-
matin remodeling factors. In both cases, the transcription of the regulated gene
will be effected. In addition, aberrant DNA methylation patterns have been as-
sociated with many human malignancies and can be used in a predictive manner.
In malignant tissues, DNA is either hypo-methylated or hyper-methylated com-
pared to the normal tissue. The location of hyper- and hypo-methylated sites
gives a distinct signature to many diseases. Traditionally, hypo-methylation
is associated with gene transcription (if it is on a regulatory region such as
promoters) and hyper-methylation is associated with gene repression.

1.2 High-throughput bisulfite sequencing

Bisulfite sequencing is a technique that can determine DNA methylation pat-
terns. The major difference from regular sequencing experiments is that, in
bisulfite sequencing DNA is treated with bisulfite which converts cytosine residues
to uracil, but leaves 5-methylcytosine residues unaffected. By sequencing and
aligning those converted DNA fragments it is possible to call methylation sta-
tus of a base. Usually, the methylation status of a base determined by a high-
throughput bisulfite sequencing will not be a binary score, but it will be a
percentage. The percentage simply determines how many of the bases that are
aligning to a given cytosine location in the genome have actual C bases in the
reads. Since bisulfite treatment leaves methylated Cs intact, that percentage will
give us percent methylation score on that base. The reasons why we will not
get a binary response are 1) the probable sequencing errors in high-throughput
sequencing experiments 2) incomplete bisulfite conversion 3) (and a more likely
scenario) is heterogeneity of samples and heterogeneity of paired chromosomes
from the same sample
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2 Basics

2.1 Reading the methylation call files

We start by reading in the methylation call data from bisulfite sequencing with
read function. Reading in the data this way will return a methylRawList object
which stores methylation information per sample for each covered base. The
methylation call files are basically text files that contain percent methylation
score per base. A typical methylation call file looks like this:

## chrBase chr base strand coverage freqC freqT

## 1 chr21.9764539 chr21 9764539 R 12 25.00 75.00

## 2 chr21.9764513 chr21 9764513 R 12 0.00 100.00

## 3 chr21.9820622 chr21 9820622 F 13 0.00 100.00

## 4 chr21.9837545 chr21 9837545 F 11 0.00 100.00

## 5 chr21.9849022 chr21 9849022 F 124 72.58 27.42

Most of the time bisulfite sequencing experiments have test and control sam-
ples. The test samples can be from a disease tissue while the control samples
can be from a healthy tissue. You can read a set of methylation call files that
have test/control conditions giving treatment vector option. For sake of sub-
sequent analysis, file.list, sample.id and treatment option should have the same
order. In the following example, first two files are have the sample ids ”test1”
and ”test2” and as determined by treatment vector they belong to the same
group. The third and fourth files have sample ids ”ctrl1” and ”ctrl2” and they
belong to the same group as indicated by the treatment vector.

library(methylKit)

file.list <- list(system.file("extdata", "test1.myCpG.txt",

package = "methylKit"), system.file("extdata",

"test2.myCpG.txt",

package = "methylKit"), system.file("extdata",

"control1.myCpG.txt",

package = "methylKit"), system.file("extdata",

"control2.myCpG.txt",

package = "methylKit"))

# read the files to a methylRawList object: myobj

myobj <- read(file.list, sample.id = list("test1",

"test2", "ctrl1", "ctrl2"), assembly = "hg18", treatment =

c(1,

1, 0, 0), context = "CpG")
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2.2 Reading the methylation calls from sorted Bismark
alignments

Alternatively, methylation percentage calls can be calculated from sorted SAM
file(s) from Bismark aligner and read-in to the memory. Bismark is a popular
aligner for bisulfite sequencing reads [1]. read.bismark function is designed to
read-in Bismark SAM files as methylRaw or methylRawList objects which store
per base methylation calls. SAM files must be sorted by chromosome and read
position columns, using ’sort’ command in unix-like machines will accomplish
such a sort easily.

The following command reads a sorted SAM file and creates a methylRaw

object for CpG methylation.The user has the option to save the methylation call
files to a folder given by save.folder option. The saved files can be read-in
using the read function when needed.

my.methRaw <- read.bismark(location = system.file("extdata",

"test.fastq_bismark.sorted.min.sam", package = "methylKit"),

sample.id = "test1", assembly = "hg18", read.context = "CpG",

save.folder = getwd())

It is also possible to read multiple SAM files at the same time, check read.bismark

documentation.

2.3 Descriptive statistics on samples

Since we read the methylation data now, we can check the basic stats about
the methylation data such as coverage and percent methylation. We now have a
methylRawList object which contains methylation information per sample. The
following command prints out percent methylation statistics for second sample:
”test2”

getMethylationStats(myobj[[2]], plot = F, both.strands = F)

## methylation statistics per base

## summary:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 20.0 82.8 63.2 94.7 100.0

## percentiles:

## 0% 10% 20% 30% 40% 50% 60% 70%

## 0.00 0.00 0.00 48.39 70.00 82.79 90.00 93.33

## 80% 90% 95% 99% 99.5% 99.9% 100%

## 96.43 100.00 100.00 100.00 100.00 100.00 100.00

##

The following command plots the histogram for percent methylation dis-
tribution.The figure below is the histogram and numbers on bars denote what
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percentage of locations are contained in that bin. Typically, percent methyla-
tion histogram should have two peaks on both ends. In any given cell, any given
base are either methylated or not. Therefore, looking at many cells should yield
a similar pattern where we see lots of locations with high methylation and lots
of locations with low methylation.

getMethylationStats(myobj[[2]], plot = T, both.strands = F)
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We can also plot the read coverage per base information in a similar way,
again numbers on bars denote what percentage of locations are contained in
that bin. Experiments that are highly suffering from PCR duplication bias will
have a secondary peak towards the right hand side of the histogram.

library("graphics")

getCoverageStats(myobj[[2]], plot = T, both.strands = F)
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Histogram of CpG coverage

log10 of read coverage per base
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2.4 Filtering samples based on read coverage

It might be useful to filter samples based on coverage. Particularly, if our
samples are suffering from PCR bias it would be useful to discard bases with
very high read coverage. Furthermore, we would also like to discard bases that
have low read coverage, a high enough read coverage will increase the power of
the statistical tests. The code below filters a methylRawList and discards bases
that have coverage below 10X and also discards the bases that have more than
99.9th percentile of coverage in each sample.

filtered.myobj <- filterByCoverage(myobj, lo.count = 10,

lo.perc = NULL, hi.count = NULL, hi.perc = 99.9)
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3 Comparative analysis

3.1 Merging samples

In order to do further analysis, we will need to get the bases covered in all
samples. The following function will merge all samples to one object for base-
pair locations that are covered in all samples. Setting destrand=TRUE (the
default is FALSE) will merge reads on both strands of a CpG dinucleotide. This
provides better coverage, but only advised when looking at CpG methylation
(for CpH methylation this will cause wrong results in subsequent analyses). In
addition, setting destrand=TRUE will only work when operating on base-pair
resolution, otherwise setting this option TRUE will have no effect. The unite()
function will return a methylBase object which will be our main object for all
comparative analysis. The methylBase object contains methylation information
for regions/bases that are covered in all samples.

meth <- unite(myobj, destrand = FALSE)

Let us take a look at the data content of methylBase object:

head(meth)

## id chr start end strand coverage1

## 1 chr21.10011833 chr21 10011833 10011833 + 174

## 2 chr21.10011841 chr21 10011841 10011841 + 173

## 3 chr21.10011855 chr21 10011855 10011855 + 175

## 4 chr21.10011858 chr21 10011858 10011858 + 175

## 5 chr21.10011861 chr21 10011861 10011861 + 174

## 6 chr21.10011872 chr21 10011872 10011872 + 167

## numCs1 numTs1 coverage2 numCs2 numTs2 coverage3 numCs3

## 1 173 1 18 18 0 40 34

## 2 164 9 20 19 1 40 18

## 3 175 0 21 21 0 39 29

## 4 131 44 21 20 1 39 31

## 5 147 27 20 15 5 39 13

## 6 160 7 20 19 1 39 34

## numTs3 coverage4 numCs4 numTs4

## 1 6 14 14 0

## 2 22 14 8 6

## 3 10 14 12 2

## 4 8 13 8 5

## 5 26 13 9 4

## 6 5 14 8 6

By default, unite function produces bases/regions covered in all samples.
That requirement can be relaxed using ”min.per.group” option in unite func-
tion.
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# creates a methylBase object. Only CpGs covered at least

# in 1 sample per group will be returned there were two

# groups defined by the treatment vector given during the

# creation of myobj treatment=c(1,1,0,0)

meth.min <- unite(myobj, min.per.group = 1L)

3.2 Sample Correlation

We can check the correlation between samples using getCorrelation. This
function will either plot scatter plot and correlation coefficients or just print a
correlation matrix

getCorrelation(meth, plot = T)

## test1 test2 ctrl1 ctrl2

## test1 1.0000 0.9253 0.8768 0.8738

## test2 0.9253 1.0000 0.8792 0.8802

## ctrl1 0.8768 0.8792 1.0000 0.9465

## ctrl2 0.8738 0.8802 0.9465 1.0000
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3.3 Clustering samples

We can cluster the samples based on the similarity of their methylation profiles.
The following function will cluster the samples and draw a dendrogram.

clusterSamples(meth, dist = "correlation", method = "ward",

plot = TRUE)
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##

## Call:

## hclust(d = d, method = HCLUST.METHODS[hclust.method])

##

## Cluster method : ward

## Distance : pearson

## Number of objects: 4

##

Setting the plot=FALSE will return a dendrogram object which can be ma-
nipulated by users or fed in to other user functions that can work with dendro-
grams.

hc <- clusterSamples(meth, dist = "correlation", method = "ward",

plot = FALSE)

We can also do a PCA analysis on our samples. The following function will
plot a scree plot for importance of components.

10



PCASamples(meth, screeplot = TRUE)

CpG methylation PCA Screeplot
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We can also plot PC1 and PC2 axis and a scatter plot of our samples on those
axis which will reveal how they cluster.

PCASamples(meth)
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3.4 Tiling windows analysis

For some situations, it might be desirable to summarize methylation information
over tiling windows rather than doing base-pair resolution analysis. methylKit
provides functionality to do such analysis. The function below tiles the genome
with windows 1000bp length and 1000bp step-size and summarizes the methyla-
tion information on those tiles. In this case, it returns a methylRawList object
which can be fed into unite and calculateDiffMeth functions consecutively
to get differentially methylated regions.

tiles <- tileMethylCounts(myobj, win.size = 1000,

step.size = 1000)

head(tiles[[1]])

## id chr start end strand

## 1 chr21.9764001.9765000 chr21 9764001 9765000 *

## 2 chr21.9820001.9821000 chr21 9820001 9821000 *

## 3 chr21.9837001.9838000 chr21 9837001 9838000 *

## 4 chr21.9849001.9850000 chr21 9849001 9850000 *
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## 5 chr21.9853001.9854000 chr21 9853001 9854000 *

## 6 chr21.9860001.9861000 chr21 9860001 9861000 *

## coverage numCs numTs

## 1 24 3 21

## 2 13 0 13

## 3 11 0 11

## 4 124 90 34

## 5 34 22 12

## 6 39 38 1

3.5 Finding differentially methylated bases or regions

calculateDiffMeth() function is the main function to calculate differential
methylation. Depending on the sample size per each set it will either use Fisher’s
exact or logistic regression to calculate P-values. P-values will be adjusted to
Q-values using SLIM method [2].

myDiff <- calculateDiffMeth(meth)

After q-value calculation, we can select the differentially methylated re-
gions/bases based on q-value and percent methylation difference cutoffs. Fol-
lowing bit selects the bases that have q-value¡0.01 and percent methylation dif-
ference larger than 25%. If you specify type="hyper" or type="hypo" options,
you will get hyper-methylated or hypo-methylated regions/bases.

# get hyper methylated bases

myDiff25p.hyper <- get.methylDiff(myDiff, difference = 25,

qvalue = 0.01, type = "hyper")

# get hypo methylated bases

myDiff25p.hypo <- get.methylDiff(myDiff, difference = 25,

qvalue = 0.01, type = "hypo")

#

#

# get all differentially methylated bases

myDiff25p <- get.methylDiff(myDiff, difference = 25,

qvalue = 0.01)

We can also visualize the distribution of hypo/hyper-methylated bases/regions
per chromosome using the following function. In this case, the example set
includes only one chromosome. The list shows percentages of hypo/hyper
methylated bases over all the covered bases in a given chromosome.

diffMethPerChr(myDiff, plot = FALSE, qvalue.cutoff = 0.01,

meth.cutoff = 25)
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## $diffMeth.per.chr

## chr number.of.hypomethylated

## 1 chr21 59

## percentage.of.hypomethylated number.of.hypermethylated

## 1 6.127 75

## percentage.of.hypermethylated

## 1 7.788

##

## $diffMeth.all

## percentage.of.hypermethylated number.of.hypermethylated

## 1 7.788 75

## percentage.of.hypomethylated number.of.hypomethylated

## 1 6.127 59

##

3.5.1 Finding differentially methylated bases using multiple-cores

The differential methylation calculation speed can be increased substantially by
utilizing multiple-cores in a machine if available. Both Fisher’s Exact test and
logistic regression based test are able to use multiple-core option.
The following piece of code will run differential methylation calculation using 2
cores.

myDiff <- calculateDiffMeth(meth, num.cores = 2)

4 Annotating differentially methylated bases or
regions

We can annotate our differentially methylated regions/bases based on gene an-
notation. In this example, we read the gene annotation from a bed file and
annotate our differentially methylated regions with that information. This will
tell us what percentage of our differentially methylated regions are on promot-
ers/introns/exons/intergenic region. Similar gene annotation can be fetched
using GenomicFeatures package available from Bioconductor.org.

gene.obj <- read.transcript.features(system.file("extdata",

"refseq.hg18.bed.txt", package = "methylKit"))

# annotate differentially methylated Cs with

# promoter/exon/intron using annotation data

annotate.WithGenicParts(myDiff25p, gene.obj)

## summary of target set annotation with genic parts

## 133 rows in target set
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## --------------

## --------------

## percentage of target features overlapping with annotation :

## promoter exon intron intergenic

## 27.82 15.04 34.59 57.14

##

##

## percentage of target features overlapping with annotation (with promoter>exon>intron precedence) :

## promoter exon intron intergenic

## 27.82 0.00 15.04 57.14

##

##

## percentage of annotation boundaries with feature overlap :

## promoter exon intron

## 0.28604 0.02683 0.17068

##

##

## summary of distances to the nearest TSS :

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5 828 45200 52000 94600 314000

Similarly, we can read the CpG island annotation and annotate our differ-
entially methylated bases/regions with them.

# read the shores and flanking regions and name the flanks

# as shores and CpG islands as CpGi

cpg.obj <- read.feature.flank(system.file("extdata",

"cpgi.hg18.bed.txt", package = "methylKit"),

feature.flank.name = c("CpGi",

"shores"))

#

diffCpGann <- annotate.WithFeature.Flank(myDiff25p,

cpg.obj$CpGi, cpg.obj$shores, feature.name = "CpGi",

flank.name = "shores")

4.1 Regional analysis

We can also summarize methylation information over a set of defined regions
such as promoters or CpG islands. The function below summarizes the methyla-
tion information over a given set of promoter regions and outputs a methylRaw

or methylRawList object depending on the input.

promoters <- regionCounts(myobj, gene.obj$promoters)

head(promoters[[1]])

15



## id chr start end strand

## 1 chr21.17806094.17808094.NA chr21 17806094 17808094 +

## 2 chr21.10119796.10121796.NA chr21 10119796 10121796 -

## 3 chr21.10011791.10013791.NA chr21 10011791 10013791 -

## 4 chr21.10119808.10121808.NA chr21 10119808 10121808 -

## 5 chr21.15357997.15359997.NA chr21 15357997 15359997 -

## 6 chr21.16023366.16025366.NA chr21 16023366 16025366 +

## coverage numCs numTs

## 1 1834 7 1827

## 2 79 44 35

## 3 3697 2982 715

## 4 79 44 35

## 5 8613 16 8594

## 6 6296 5 6291

4.2 Convenience functions for annotation objects

After getting the annotation of differentially methylated regions, we can get
the distance to TSS and nearest gene name using the getAssociationWithTSS

function.

diffAnn <- annotate.WithGenicParts(myDiff25p, gene.obj)

# target.row is the row number in myDiff25p

head(getAssociationWithTSS(diffAnn))

## target.row dist.to.feature feature.name feature.strand

## 60 1 951 NM_199260 -

## 60.1 2 931 NM_199260 -

## 60.2 3 838 NM_199260 -

## 60.3 4 828 NM_199260 -

## 60.4 5 802 NM_199260 -

## 60.5 6 723 NM_199260 -

It is also desirable to get percentage/number of differentially methylated
regions that overlap with intron/exon/promoters

getTargetAnnotationStats(diffAnn, percentage = TRUE,

precedence = TRUE)

## promoter exon intron intergenic

## 27.82 0.00 15.04 57.14

We can also plot the percentage of differentially methylated bases overlap-
ping with exon/intron/promoters
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plotTargetAnnotation(diffAnn, precedence = TRUE, main =

"differential methylation annotation")
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We can also plot the CpG island annotation the same way. The plot below
shows what percentage of differentially methylated bases are on CpG islands,
CpG island shores and other regions.

plotTargetAnnotation(diffCpGann, col = c("green",

"gray", "white"), main = "differential methylation

annotation")
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It might be also useful to get percentage of intron/exon/promoters that
overlap with differentially methylated bases.

getFeatsWithTargetsStats(diffAnn, percentage = TRUE)

## promoter exon intron

## 0.28604 0.02683 0.17068

5 methylKit convenience functions

5.1 coercion

Most methylKit objects (methylRaw,methylBase and methylDiff) can be co-
erced to GRanges objects from GenomicRanges package. Coercing methylKit
objects to GRanges will give users additional flexiblity when customising their
analyses.
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class(meth)

## [1] "methylBase"

## attr(,"package")

## [1] "methylKit"

as(meth, "GRanges")

## GRanges with 963 ranges and 13 elementMetadata cols:

## seqnames ranges strand |

## <Rle> <IRanges> <Rle> |

## [1] chr21 [10011833, 10011833] + |

## [2] chr21 [10011841, 10011841] + |

## [3] chr21 [10011855, 10011855] + |

## [4] chr21 [10011858, 10011858] + |

## [5] chr21 [10011861, 10011861] + |

## [6] chr21 [10011872, 10011872] + |

## [7] chr21 [10011876, 10011876] + |

## [8] chr21 [10011878, 10011878] + |

## [9] chr21 [10011925, 10011925] - |

## ... ... ... ... ...

## [955] chr21 [9944505, 9944505] + |

## [956] chr21 [9944663, 9944663] - |

## [957] chr21 [9959407, 9959407] + |

## [958] chr21 [9959541, 9959541] - |

## [959] chr21 [9959569, 9959569] - |

## [960] chr21 [9959577, 9959577] - |

## [961] chr21 [9959644, 9959644] - |

## [962] chr21 [9959650, 9959650] - |

## [963] chr21 [9967634, 9967634] - |

## id coverage1 numCs1 numTs1

## <factor> <integer> <numeric> <numeric>

## [1] chr21.10011833 174 173 1

## [2] chr21.10011841 173 164 9

## [3] chr21.10011855 175 175 0

## [4] chr21.10011858 175 131 44

## [5] chr21.10011861 174 147 27

## [6] chr21.10011872 167 160 7

## [7] chr21.10011876 160 148 12

## [8] chr21.10011878 150 134 16

## [9] chr21.10011925 120 65 55

## ... ... ... ... ...

## [955] chr21.9944505 37 2 35

## [956] chr21.9944663 61 19 42

## [957] chr21.9959407 44 17 27

## [958] chr21.9959541 26 12 14
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## [959] chr21.9959569 25 17 8

## [960] chr21.9959577 25 25 0

## [961] chr21.9959644 21 0 21

## [962] chr21.9959650 21 6 15

## [963] chr21.9967634 10 0 10

## coverage2 numCs2 numTs2 coverage3 numCs3

## <integer> <numeric> <numeric> <integer> <numeric>

## [1] 18 18 0 40 34

## [2] 20 19 1 40 18

## [3] 21 21 0 39 29

## [4] 21 20 1 39 31

## [5] 20 15 5 39 13

## [6] 20 19 1 39 34

## [7] 21 18 3 38 24

## [8] 20 19 1 37 20

## [9] 37 21 16 68 21

## ... ... ... ... ... ...

## [955] 147 56 91 86 79

## [956] 116 71 45 45 35

## [957] 118 58 60 52 49

## [958] 76 44 32 39 37

## [959] 77 69 8 40 40

## [960] 77 71 6 40 40

## [961] 97 50 47 59 52

## [962] 103 57 46 59 51

## [963] 61 25 36 93 62

## numTs3 coverage4 numCs4 numTs4

## <numeric> <integer> <numeric> <numeric>

## [1] 6 14 14 0

## [2] 22 14 8 6

## [3] 10 14 12 2

## [4] 8 13 8 5

## [5] 26 13 9 4

## [6] 5 14 8 6

## [7] 14 11 9 2

## [8] 17 12 12 0

## [9] 47 20 6 14

## ... ... ... ... ...

## [955] 7 40 25 15

## [956] 10 31 25 6

## [957] 3 40 27 13

## [958] 2 39 32 7

## [959] 0 39 35 4

## [960] 0 39 36 3

## [961] 7 31 14 17
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## [962] 8 32 21 11

## [963] 31 56 29 27

## ---

## seqlengths:

## chr21

## NA

class(myDiff)

## [1] "methylDiff"

## attr(,"package")

## [1] "methylKit"

as(myDiff, "GRanges")

## GRanges with 963 ranges and 3 elementMetadata cols:

## seqnames ranges strand |

## <Rle> <IRanges> <Rle> |

## [1] chr21 [10011833, 10011833] + |

## [2] chr21 [10011841, 10011841] + |

## [3] chr21 [10011855, 10011855] + |

## [4] chr21 [10011858, 10011858] + |

## [5] chr21 [10011861, 10011861] + |

## [6] chr21 [10011872, 10011872] + |

## [7] chr21 [10011876, 10011876] + |

## [8] chr21 [10011878, 10011878] + |

## [9] chr21 [10011925, 10011925] - |

## ... ... ... ... ...

## [955] chr21 [9944505, 9944505] + |

## [956] chr21 [9944663, 9944663] - |

## [957] chr21 [9959407, 9959407] + |

## [958] chr21 [9959541, 9959541] - |

## [959] chr21 [9959569, 9959569] - |

## [960] chr21 [9959577, 9959577] - |

## [961] chr21 [9959644, 9959644] - |

## [962] chr21 [9959650, 9959650] - |

## [963] chr21 [9967634, 9967634] - |

## id qvalue meth.diff

## <factor> <numeric> <numeric>

## [1] chr21.10011833 8.543e-04 10.590

## [2] chr21.10011841 6.050e-13 46.671

## [3] chr21.10011855 4.579e-09 22.642

## [4] chr21.10011858 5.922e-01 2.041

## [5] chr21.10011861 8.163e-08 41.197

## [6] chr21.10011872 1.238e-03 16.477

## [7] chr21.10011876 1.933e-04 24.366
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## [8] chr21.10011878 3.489e-04 24.694

## [9] chr21.10011925 8.543e-04 24.095

## ... ... ... ...

## [955] chr21.9944505 0.000e+00 -51.018

## [956] chr21.9944663 7.678e-05 -28.100

## [957] chr21.9959407 4.839e-08 -36.312

## [958] chr21.9959541 3.145e-06 -33.560

## [959] chr21.9959569 3.702e-02 -10.623

## [960] chr21.9959577 4.923e-01 -2.085

## [961] chr21.9959644 3.291e-05 -30.960

## [962] chr21.9959650 6.575e-05 -28.314

## [963] chr21.9967634 1.028e-03 -25.863

## ---

## seqlengths:

## chr21

## NA

5.2 select

We can also select rows from methylRaw, methylBase and methylDiff objects
with ”select” function. An appropriate methylKit object will be returned as a
result of ”select” function.

select(meth, 1:10) # select first 10 rows of a methylBase object

## id chr start end strand coverage1

## 1 chr21.10011833 chr21 10011833 10011833 + 174

## 2 chr21.10011841 chr21 10011841 10011841 + 173

## 3 chr21.10011855 chr21 10011855 10011855 + 175

## 4 chr21.10011858 chr21 10011858 10011858 + 175

## 5 chr21.10011861 chr21 10011861 10011861 + 174

## 6 chr21.10011872 chr21 10011872 10011872 + 167

## 7 chr21.10011876 chr21 10011876 10011876 + 160

## 8 chr21.10011878 chr21 10011878 10011878 + 150

## 9 chr21.10011925 chr21 10011925 10011925 - 120

## 10 chr21.10011938 chr21 10011938 10011938 - 134

## numCs1 numTs1 coverage2 numCs2 numTs2 coverage3 numCs3

## 1 173 1 18 18 0 40 34

## 2 164 9 20 19 1 40 18

## 3 175 0 21 21 0 39 29

## 4 131 44 21 20 1 39 31

## 5 147 27 20 15 5 39 13

## 6 160 7 20 19 1 39 34

## 7 148 12 21 18 3 38 24

## 8 134 16 20 19 1 37 20
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## 9 65 55 37 21 16 68 21

## 10 127 7 36 34 2 74 64

## numTs3 coverage4 numCs4 numTs4

## 1 6 14 14 0

## 2 22 14 8 6

## 3 10 14 12 2

## 4 8 13 8 5

## 5 26 13 9 4

## 6 5 14 8 6

## 7 14 11 9 2

## 8 17 12 12 0

## 9 47 20 6 14

## 10 10 20 17 3

select(myDiff, 20:30) # select rows 10 of a methylDiff object

## id chr start end strand pvalue

## 20 chr21.10012079 chr21 10012079 10012079 + 1.325e-07

## 21 chr21.10012089 chr21 10012089 10012089 + 6.797e-02

## 22 chr21.10012095 chr21 10012095 10012095 + 9.125e-02

## 23 chr21.10012101 chr21 10012101 10012101 + 8.882e-16

## 24 chr21.10012696 chr21 10012696 10012696 + 2.253e-03

## 25 chr21.10012699 chr21 10012699 10012699 + 1.783e-09

## 26 chr21.10012876 chr21 10012876 10012876 + 4.251e-01

## 27 chr21.10012881 chr21 10012881 10012881 + 1.000e+00

## 28 chr21.10012883 chr21 10012883 10012883 + 4.287e-01

## 29 chr21.10012887 chr21 10012887 10012887 + 1.645e-02

## 30 chr21.10012891 chr21 10012891 10012891 + 8.591e-01

## qvalue meth.diff

## 20 1.050e-06 26.617

## 21 1.048e-01 9.564

## 22 1.324e-01 5.726

## 23 4.221e-14 39.808

## 24 6.033e-03 9.685

## 25 1.955e-08 44.703

## 26 4.224e-01 3.888

## 27 5.922e-01 0.000

## 28 4.252e-01 3.750

## 29 3.316e-02 20.808

## 30 5.922e-01 0.686

5.3 reorganize

methylBase and methylRawList can be reorganized by reorganize function.
The function can subset the objects based on provided sample ids, it also cre-
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ates a new treatment vector determining which samples belong to which group.
Order of sample ids should match the treatment vector order.

# creates a new methylRawList object

myobj2 <- reorganize(myobj, sample.ids = c("test1",

"ctrl2"), treatment = c(1, 0))

# creates a new methylBase object

meth2 <- reorganize(meth, sample.ids = c("test1",

"ctrl2"), treatment = c(1, 0))

5.4 percMethylation

Percent methylation values can be extracted from methylBase object by using
percMethylation function.

# creates a matrix containing percent methylation values

perc.meth <- percMethylation(meth)
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7 R session info

sessionInfo()

## R version 2.15.0 (2012-03-30)

## Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## attached base packages:

## [1] stats graphics grDevices utils datasets

## [6] methods base

##

## other attached packages:

## [1] data.table_1.8.0 methylKit_0.5 knitr_0.4
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##

## loaded via a namespace (and not attached):

## [1] BiocGenerics_0.2.0 codetools_0.2-8

## [3] digest_0.5.2 evaluate_0.4.2

## [5] formatR_0.4 GenomicRanges_1.8.3

## [7] highlight_0.3.1 IRanges_1.14.2

## [9] KernSmooth_2.23-7 parallel_2.15.0

## [11] parser_0.0-14 plyr_1.7.1

## [13] Rcpp_0.9.10 stats4_2.15.0

## [15] stringr_0.6 tools_2.15.0
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