## **Supplemental Information**

for

Compound I is the reactive intermediate in the first monooxygenation step during conversion of cholesterol to pregnenolone by cytochrome P450scc (CYP 11A1): EPR /

## **ENDOR/cryoreduction-annealing studies**

Roman Davydov,<sup>1</sup> Andrey A. Gilep,<sup>2</sup> Natallia V. Strushkevich,<sup>3</sup>

Sergey A.Usanov,<sup>2\*</sup> and Brian M. Hoffman<sup>1\*</sup>

<sup>1</sup>Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208

<sup>2</sup>Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141 Minsk,

Kuprevicha 5, Belarus

<sup>3</sup>Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario,

M5G 1L7, Canada

Table S1: Spin-Hamiltonian parameters for cryogenerated iron(III) hydroperoxy intermediates as annealed to a temperature just below the decay temperature

| Protein        | <b>g</b> <sub>1</sub> | <b>g</b> <sub>2</sub> | <b>g</b> <sub>3</sub> | A <sub>max</sub>   | Ref  |
|----------------|-----------------------|-----------------------|-----------------------|--------------------|------|
|                |                       |                       |                       | (MHz) <sup>a</sup> |      |
| P450scc-CH     | 2.366                 | 2.182                 | 1.949                 |                    | this |
|                | 2.34                  | 2.182                 | 1.949                 | 8.5                |      |
| Р4502В4- ВНТ   | 2.32                  | 2.156                 | nd                    | 10.4               | 2    |
| gsNOS-arginine | 2.31                  | 2.182                 | 1.95                  | 8.4                | 3    |
| P450cam-Cam    | 2.30                  | 2.14                  | nd`                   | 11.2               |      |
| СРО            | 2.28                  | 2.254                 | 1.918                 | 12                 | 5    |
|                |                       |                       |                       |                    |      |
| Heme oxygenase | 2.37                  | 2.257                 | 1.908                 | 12.9               | 4    |
| HRP            | 2.32                  | 2.254                 | 1.907                 | 8.2                | 5    |
| β Chains       | 2.303                 | 2.18                  | 1.946                 | 12                 | 5    |

<sup>a</sup>Maximum superhyperfine coupling for proton of hydroperoxide ligand

## References

1. Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. W.; Sligar, S. G.; Hoffman, B. M. J. Am. Chem. Soc. 2001, 123, 1403.

2. Davydov, R.; Razeghifard, R.; Im, S.-C.; Waskell, L.; Hoffman, B. M. *Biochemistry* **2008**, *47*, 9661.

3. Davydov, R.; Sudhamsu, J.; Lees, N. S.; Crane, B. R.; Hoffman, B. M. J. Am. Chem. Soc. **2009**, *131*, 14493.

4. Davydov, R.; Kofman, V.; Fujii, H.; Yoshida, T.; Ikeda-Saito, M.; Hoffman, B. J. Am. Chem. Soc. **2002**, *124*, 1798.

5. Unpublishede data



**Fig. S1** X-band EPR spectrum of 0.3 mM ferric P450scc in the presence of 1mM CH in 0.1 M KPi buffer pH 7.4 containing 20% glycerol. Instrument conditions: Am=10G, P=2 mW, f=9.381 GHz, T=10K.



Fig. S2X-band EPR spectra of low-spin forms of complexes of Fe(III) P450scc with<br/>cholesterol, 22-HC and 20-HC. Instrument conditions: Am=10G, P=10 mW, f=9.381 GHz,<br/>T=28K.



**Fig. S3** Orientation selected <sup>1</sup>H 35 GHz CW ENDOR spectra of Fe(III)P450scc-CH in  $H_2O(black solid line)$ and in  $D_2O$  (red dotted line). Instrument conditions: T=2K, 2G, rf sweep rate= 1Mhz, bandwidth broadening =60kHz, 30scans.



**Fig. S4** Orientation selected <sup>1</sup>H 35 GHz CW ENDOR spectra of Fe(III)P450scc-22-HC complex in  $H_2O(black solid line)$ and in  $D_2O$  (blue dotted line). Instrument conditions: T=2K, 2G, rf sweep rate= 1Mhz, bandwidth broadening =60kHz, 30scans.



**Fig. S5** Orientation selected <sup>1</sup>H 35 GHz CW ENDOR spectra of Fe(III)P450scc-20-HC complex in  $H_2O$ . Instrument conditions: T=2K, 2G, rf sweep rate= 1Mhz, bandwidth broadening =60kHz, 30scans.



9500 10000 10500 11000 11500 12000 12500 13000 13500 14000 FIELD, G

**Fig. S6** 2K 35GHz EPR spectra of cryoreduced oxy-P450scc-CH annealed at 126K (A) and 170K (C) and simulated EPR signal A species (B). The difference signal A-B obtained by subtraction of scaled signal B from signal A. Integration of visible part of difference signal A-B and signal C show that relative contributions of hydroperoxo-feric P450scc species A (70%) and the minor species B and C(`30%) in cryoreduced oxy-P450scc-cholesterol complex.