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1 Experimental results

The diffusion of telomeres was described and analyzed in ref. (1). We ex-
tended this data set using similar experimental set-up. U2OS osteosarcoma
cells are transiently transfected with a plasmid coding for a fused TRF2-
GFP protein which is then independently expressed. The TRF2 subunit
of the fused protein binds to the telomeric chain as a part of the shelterin
complex while the GFP subunit is used to track the location of the telom-
eres with fluorescent microscopy. An inverted fluorescent Olympus IX71
microscope is used with an oil objective lens of 60X and a NA=1.35. The
microscope is connected to both a sensitive and fast CCD camera that has
an electron-multiplication mechanism (EMCCD, Andor DU-885), as well as,
to a confocal setup (Olympus IV-1000).

Typically several dozens of telomeres are observed in each cell, however,
only the brightest are used for data analysis. In order to track the telom-
eres in an extended time scale, the measurements are separated into three
overlapping time domains. For measuring the shortest times, a horizontal
slice of the cells is imaged in 2D by selecting a single plane in focus using
the CCD camera with wide field illumination. Data acquisition rate is 84
Hz. However, bleaching limits the total time of the acquisition to ∼1000
measurement points (i.e., 11.2 seconds). 2D confocal fluorescent microscopy
is used to image cells at 2.3 Hz up to 85 seconds in the intermediate time
domain. Here too only a single focal slice is imaged, thus enabling faster
acquisition. Since illumination is not wide field, bleaching is prevented.
At times larger than 100 seconds, cell motion in 3D becomes significant and
must be corrected for. Thus, a full 3D confocal scan of each cell is performed
at each time point and the motion of the cells is corrected by calculating
the nucleus center of mass and shifting all tracks accordingly. The 3D mea-
surements span 35 minutes with a full imaging scan completed every 18.5
seconds. The 3D data for each telomere is analyzed in 2D so that it can be
combined with the 2D confocal and CCD data. Overall, a coverage of six
time orders, 10−2

− 103, seconds is achieved.
The PSF of the fluorescent signal gives a resolution of 200 nm in the

horizontal plain. The Imaris program is used to identify the center of the
signal from each telomere and thus improve tracking accuracy. The overall
accuracy was evaluated by measuring dead fixated cells. Since there is no
motion inside these cells, the experimental error can be estimated according
to the apparent motion of the telomeres. In all time domains, the error
could be described by a normally distributed random variable with a zero
mean and standard deviation of about 22 nm, Fig S1 - S3.
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We analyze the X and Y coordinate of a telomere motion. As explained
above, the datasets are recorded in three time regimes related to three dif-
ferent measurement methods: 10−2

−10 [s] (CCD), 1−102 [s] (2D confocal)
and 10−103 [s] (3D confocal). The CCD dataset consists of 180 trajectories
of length 1000, the 2D confocal dataset of 94 trajectories of length 200, and
the 3D confocal dataset of 1090 tracks of length 100. Observe that for the
3D confocal measurements we analyze the 2D projections. In Fig. S4 we
plot all 2 dimensional CCD measurements. It is clear that the spread of the
different trajectories in the xy plane is much larger than the dynamics of
each telomere. Thus, we shifted all trajectories to make them start at the
origin. In Fig. 1 sample trajectories of X time series corresponding to each
of the time regimes are presented. It is important to note that there is no
physical difference between the X and Y directions and these are chosen
simply by the orientation of the microscope.

2 Ergodicity and mixing

In Fig. S5A we show the ergodicity test results (calculated as the ensemble
average over all trajectories within a certain time range), while in Fig. S5B
the mixing test results. Note, that the test indicates ergodicity and mixing,
respectively, since the plotted curves converge to zero.

3 Generalized p-variation test

One can show that for data from an H-self-similar process with stationary

increments and finite moments V
(p)
m ∼ mHp−1. In particular, this implies

that in the case of FBM for p > 1/H sample p-variation is an increasing
function of m (it tends to zero as m gets smaller), whereas for p < 1/H it
is a decreasing function of m (it diverges to infinity when m gets smaller)

(2). In the case of CTRW V
(p)
m as a function of m changes its behavior from

increasing to decreasing for p = 1/0.5 = 2, exactly as for a BM (3).
This suggested a generalized p-variation test (2) for checking both whether

a given sample follows the self-similar dynamics and, in the subdiffusion case,
distinguishing between a FBM (a light-tailed model), a fractional Lévy sta-
ble motion (FLSM) (a heavy-tailed model) and a CTRW. If the underlying
model is a FBM, then sample p-variation should change its monotonic char-
acter from a decreasing to an increasing one for some p = 1/H, 0 < H < 1.
If the underlying model is a FLSM, then sample p-variation as a function
of m should be a decreasing function for all p = 1/H, 0 < H < 1. Finally,
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if the proper model is a CTRW, then sample p-variation should change its
monotonic character for p = 2.

The results of the p-variation test are presented in Figs. S6-S8.
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Figure S1: MSD of CCD measurements (blue) and experimental noise (red).
vertical lines are the spread of individual MSDs of different telomeres.
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Figure S2: MSD of 2D measurements (blue) and experimental noise (red).
vertical lines are the spread of individual MSDs of different telomeres.
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Figure S3: MSD of 3D measurements (blue) and experimental noise (red).
vertical lines are the spread of individual MSDs of different telomeres.
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Figure S4: 2-dimensional CCD measurements in different focus. Observe
that the rectangles correspond to the zoomed area plotted in the lower panel.



Algorithm for identification of fractional Brownian motion 8

0 500 1000

−0.2

−0.1

0

0.1

0.2

0.3

n
R

e(
E

(n
))

0 500 1000

−0.2

−0.1

0

0.1

0.2

0.3

Im
(E

(n
))

n
0 500 1000

−0.2

−0.1

0

0.1

0.2

0.3

R
e(

∑
n
−

1

k
=

0
E

(k
)/

n
)

n
0 500 1000

−0.2

−0.1

0

0.1

0.2

0.3
Im

(∑
n
−

1

k
=

0
E

(k
)/

n
)

n

0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

n

R
e(

E
(n

))

0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

Im
(E

(n
))

n
0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

R
e(

∑
n
−

1

k
=

0
E

(k
)/

n
)

n
0 100 200

−0.2

−0.1

0

0.1

0.2

0.3

Im
(∑

n
−

1

k
=

0
E

(k
)/

n
)

n

0 50 100

−0.2

−0.1

0

0.1

0.2

0.3

n

R
e(

E
(n

))

0 50 100

−0.2

−0.1

0

0.1

0.2

0.3

Im
(E

(n
))

n
0 50 100

−0.2

−0.1

0

0.1

0.2

0.3

R
e(

∑
n
−

1

k
=

0
E

(k
)/

n
)

n
0 50 100

−0.2

−0.1

0

0.1

0.2

0.3

Im
(∑

n
−

1

k
=

0
E

(k
)/

n
)

n

A B

Figure S5: DF test results for the ergodicity (A) and mixing (B) property of
the increments of X coordinate corresponding to each of the time regimes:
CCD (top panel), 2D (middle panel), 3D (bottom panel).
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Figure S6: Sample p-variation for m = 1, 2, . . . , 10, H = 0.1, 0.2, . . . , 0.9 for
the sample trajectory from the CCD regime depicted in Fig. 1A. We observe
that in the first three panels sample 1/H-variation has an increasing trend,
it stabilizes in the fourth panel (corresponding to H = 0.2), and it has a
decreasing trend in the subsequent panels. This behavior is similar to that
of FBM with H = 0.2.
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Figure S7: Sample p-variation for m = 1, 2, . . . , 10, H = 0.1, 0.2, . . . , 0.9 for
the sample trajectory from the 2D regime depicted in Fig. 1A. We observe
that in the first three panels sample 1/H-variation has an increasing trend,
it stabilizes in the fourth panel (corresponding to H = 0.2), and it has a
decreasing trend in the subsequent panels. This behavior is similar to that
of FBM with H = 0.2.
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Figure S8: Sample p-variation for m = 1, 2, . . . , 10, H = 0.1, 0.2, . . . , 0.9 for
the sample trajectory from the 3D regime depicted in Fig. 1A. We observe
that in the first six panels sample 1/H-variation is neither decreasing nor
increasing and it has a decreasing trend starting from the seventh panel
onwards (corresponding to H = 0.35). The conclusions cannot be definite
since the sample size is very small (100 observations). Nevertheless, the
behavior in the last three panels is similar to that of FBM with H = 0.35.


