Supplemental Material Online

Contents:

Supplemental Figure 1: Explanatory schemes. (A) proposed mitochondrial pathway of H_2S disposal; (B) AAV2/8-TBG-*h.Ethel*^{HA} construct.

Supplemental Figure 2: Characterization of $Ethel^{-/-}$ mice treated with $4x10^{12}$ vg/Kg AAV2/8-TBG-*h*.*Ethel*^{HA}.

Supplemental Figure 3: Kaplan-Meier survival probability curves.

Supplemental Figure 4: Thiosulfate concentration in skeletal muscle.

Supplemental Table I: COX/CS activities in skeletal muscle and brain.

Supplemental Figure 1. Explanatory schemes. (A) Proposed mitochondrial pathway of H_2S disposal according to Hildebrandt and Grieshaber, 2008. SQR: sulfide:quinone oxidoreductase; Qox: oxidized coenzyme Q; Qred: reduced coenzyme Q; III: complex III; IV: complex IV; cytC: cytochrome C; the Sulfur dioxygenase is encoded by *Ethe1*. (**B**) AAV2/8-TBG-*h.Ethe1*^{HA} construct. ITR: inverted terminal repeat; TBG: tyroxine-binding globulin promoter; WPRE: Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element; P1-P3: primers used for PCR amplification.

Supplemental Figure 2. Characterization of *Ethe1*^{-/-} mice infected with $4x10^{12}$ vg/Kg AAV2/8-TBG-*h.Ethe1*^{HA}. (A) Liver-specific expression of the *h.Ethe1*^{HA} gene product using an anti-Ethe1 antibody; SDH-A is used as a protein load standard. (B) SDO activity, expressed as nmol O₂/min/mg) in *Ethe1*^{+/+} (+/+), *Ethe1*^{-/-} (-/-), and AAV-treated *Ethe1*^{-/-} (-/- AAV) liver homogenates. (C) Kaplan-Meier survival probability curve. Significance was assessed by the log-rank test. Blue line: *Ethe1*^{-/-} mice; Red line: NAC-treated *Ethe1*^{-/-} mice; Yellow line: AAV+NAC-treated *Ethe1*^{-/-} mice; the curves of NAC-treated and AAV+NAC-treated *Ethe1*^{-/-} mice do not differ significantly; the difference with the untreated group is p<0.0001. **D**) Plasma thiosulfate: the levels in AAV+NAC-treated *Ethe1*^{-/-} (-/- AAV) mice do not significantly differ from those in NAC-only treated (-/- NAC) animals. The difference with the untreated group is p<0.0001 (unpaired, two-tail Student's *t* test). See main text for details.

Supplemental Figure 3. Kaplan-Meier survival probability curves. (A) Blue line: untreated *Ethe1^{-/-}* mice (n=15); Red line: NAC-treated *Ethe1^{-/-}* mice (n=10); Yellow line: AAV+NAC-treated *Ethe1^{-/-}* mice (n=10). NAC was administered throughout the experiment. (B) Blue line: untreated *Ethe1^{-/-}* mice; Red line: NAC-treated *Ethe1^{-/-}* mice (n=7); Yellow line: AAV+NAC-treated *Ethe1^{-/-}* mice (n=10). NAC was suspended at P28. The two curves of NAC-treated *Ethe1^{-/-}* mice are not significantly different.

Supplemental Figure 4. Thiosulfate in skeletal muscle. Blue bar: $Ethe^{+/+}$ control mice (n=3); Black bar: untreated $Ethe1^{-/-}$ mice (n=3); Red bar: AAV-treated $Ethe1^{-/-}$ mice (n=5). ** Unpaired, two-tail Student's *t* test p= 0.0006.

Supplemental Table I		
Tissue	Genotype	COX/CS*
Muscle	+/+	99.7 ± 5.0
	/	$22.7 \pm 2,1$
	-/- AAV	46.4 ± 6.0
Brain	+/+	60.7 ± 5.5
	/	16.7 ± 2.5
	-/- AAV	32.8 ± 4.7

Values are expressed as means \pm SD. +/+: *Ethe*^{+/+} control mice (n=3); -/-: untreated *Ethe1*^{-/-} mice (n=3); -/- AAV: AAV-treated *Ethe1*^{-/-} mice (n=5)

*Student's *t* test between each group in each tissue p<0.001