Appendix

Throughout the appendix, we assume that $h = h(n)$ is a sequence such that as $n \to \infty$, $h \to 0$, and $nh \to \infty$. We also assume that *z* is an interior point of the support of *Z*. We assume the following regularity conditions:

i) $\theta(\cdot)$ and $f_Z(\cdot)$ satisfy the smoothness assumptions of Fan, et. al. (1995);

ii) The estimating functions in the right hand side of naive kernel estimating equations, IPW kernel estimating equations, and AIPW kernel estimating equations are twice continuously differentiable with respect to α at a target point *z*, and the second derivatives are uniformly bounded.

A.1 Sketch of the Proof of Theorem 1

If $\mu^{(1)}\{\hat{\theta}_{naive}(z)\}\neq 0$, simple calculations show that the solution of equation (7) for $\hat{\theta}_{naive}(z)$ is $\mu{\{\widetilde{\theta}_{naive}(z)\}} = E(RY|Z=z)/E(R|Z=z)$, which is equal to $cov(R,Y|Z=z)/E(R|Z=z)$ + $\mu\{\theta(z)\}\$. This gives the expression for $\tilde{\theta}_{naive}(z)$ stated in the theorem.

Next study the expression of $\tilde{\theta}_{IPW}(z)$. The left hand side of (8) is equal to

$$
E\left[\frac{E(R|Y,Z,\boldsymbol{U})}{\widetilde{\pi}}\mu^{(1)}\{\widetilde{\theta}_{IPW}(z)\}V^{-1}\{\widetilde{\theta}_{IPW}(z)\}\widetilde{\zeta}\}\left[Y-\mu\{\widetilde{\theta}_{IPW}(z)\}\right]\middle|Z=z\right]
$$

by taking a double expectation given *Y*, *Z* and *U*. If model (3) of π is correctly specified, then $\widetilde{\pi} = E(R|Z, U)$. Also under MAR, $E(R|Y, Z, U) = E(R|Z, U)$. Therefore the above quantity equals to $E[\mu^{(1)}\{\tilde{\theta}_{IPW}(z)\}\times V^{-1}\{\tilde{\theta}_{IPW}(z)\};\tilde{\zeta}\}[Y-\mu{\{\tilde{\theta}_{IPW}(z)\}}]|Z=z]$. If $\mu^{(1)}\{\tilde{\theta}_{IPW}(z)\}\neq 0$, solving for $\tilde{\theta}_{IPW}(z)$ yields $\mu{\{\theta}_{IPW}(z)\}=E[Y|Z=z]=\mu{\{\theta(z)\}}$. Therefore, $\hat{\theta}_{IPW}(z)$ is a consistent estimator of $\theta(z)$ when model (3) of π is correctly specified or π_0 is known by design.

Now study the expression of $\tilde{\theta}_{AIPW}(z)$ from (9). Under the MAR assumption (2), the left hand side of (9) can be rewritten as

$$
E\left[\mu^{(1)}\{\widetilde{\theta}_{AIPW}(z)\}V^{-1}\{\widetilde{\theta}_{AIPW}(z)\}\widetilde{\zeta}\}\left[Y-\mu\{\widetilde{\theta}_{AIPW}(z)\}\right]|Z=z\right]
$$

+
$$
E\left[\left(\frac{R}{\widetilde{\pi}}-1\right)\mu^{(1)}\{\widetilde{\theta}_{AIPW}(z)\}V^{-1}\{\widetilde{\theta}_{AIPW}(z)\}\widetilde{\zeta}\}\left[Y-\widetilde{\delta}(Z,U)\}\right]|Z=z\right]=0.
$$
 (A.1)

If model (3) for π is correctly specified, i.e., $\tilde{\pi} = E(R|Z, U)$, or model (6) for $\delta(\cdot)$ is correctly specified, i.e., $\delta(Z, U) = E(Y|Z, U)$, one can easily see that the second term of $(A.1)$ is 0. Hence (A.1) is equal to

$$
E\left[\mu^{(1)}\{\widetilde{\theta}_{AIPW}(z)\}V^{-1}\{\widetilde{\theta}_{AIPW}(z)\}\widetilde{\zeta}\}\left[Y-\mu\{\widetilde{\theta}_{AIPW}(z)\}\right]|Z=z\right]=0.
$$

It follows that if $\mu^{(1)}\{\tilde{\theta}_{AIPW}(z)\}\neq 0$, we have $\tilde{\theta}_{AIPW}(z)=\theta(z)$, i.e., $\hat{\theta}_{AIPW}(z)$ is a consistent estimator of $\theta(z)$.

A.2 Proof of Theorem 2: Asymptotic Bias and Variance of the IPW Estimator

We first assume that π_0 is known by design and prove that the asymptotic distribution of $\theta_{IPW}(z)$ is given in (10). We also assume that the variance parameter ζ in the working variance *V* is known. We will then extend the results when π and ζ are estimated. For any interior point *z*, reparameterize α as $\{\theta(z), h\theta'(z)\}^T$ and denote by $\theta_0(z)$ the true value of $\theta(z)$, $\alpha_0 =$ $\{\theta_0(z), h\theta'_{0}(z)\}$ ^T and $\hat{\alpha}_{IPW}(z)$ the solution of the local linear IPW kernel estimating equations. A Taylor expansion of the local linear IPW kernel estimating equations gives

$$
\sqrt{nh}\{\boldsymbol{\alpha}_{IPW}(z)-\boldsymbol{\alpha}_0\}=-\sqrt{nh}\left\{\boldsymbol{\Gamma}_n(\boldsymbol{\alpha}_*)\right\}^{-1}\boldsymbol{\Lambda}_n(\boldsymbol{\alpha}_0),
$$

where α_* is between $\hat{\alpha}_{IPW}(z)$ and α_0 , and

$$
\Lambda_n(\alpha) = n^{-1} \sum_{i=1}^n R_i \pi_{i0}^{-1}(Z_i, \mathbf{U}_i) K_h(Z_i - z) \mu_i^{(1)}(z, \alpha) V_i^{-1}(z, \alpha) \mathbf{G}(Z_i - z) [Y_i - \mu \{ \mathbf{G}(Z_i - z)^T \alpha \}],
$$

where $\mu_i^{(1)}$ $V_i^{(1)}(z,\bm{\alpha}) ~=~ \mu^{(1)}\{\bm{G}(Z_i-z)^T\bm{\alpha}\}$ and $V_i(z,\bm{\alpha}) ~=~ V[\mu\{\bm{G}(Z_i-z)^T\bm{\alpha}\};\bm{\zeta}_0]$, $\bm{\Gamma}_n(\bm{\alpha}) ~=~ \bm{\zeta}_i^{(1)}(z,\bm{\alpha})$ $\partial \mathbf{\Lambda}_n(\boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}^T.$

Using the results in Appendix A.1, we have $\hat{\alpha}_{IPW}(z) \rightarrow \alpha_0$ in probability. Therefore, $\alpha_* \stackrel{P}{\to} \alpha_0$. Under the MAR assumption (2), simple calculations show that

$$
\mathbf{\Gamma}_n(\boldsymbol{\alpha}_*) = -E\left[K_h(Z-z)\left\{\mu^{(1)}(z,\boldsymbol{\alpha}_0)\right\}^2 V^{-1}(z,\boldsymbol{\alpha}_0)\boldsymbol{G}(Z-z)\boldsymbol{G}(Z-z)^T\right] + o_p(1)
$$
\n
$$
= -f_Z(z)\left(\mu^{(1)}\{\theta(z)\}\right)^2 V^{-1}\{\theta(z)\}\boldsymbol{D}(K) + o_p(1)
$$

where $\mathbf{D}(K)$ is a 2 × 2 matrix with the (j, k) th element $c_{j+k-2}(K) \times h^{(j+k-2)}$, and $c_r(K)$ = $\int s^r K(s) ds$. It follows that

$$
\sqrt{nh}\{\hat{\alpha}_{IPW}(z)-\alpha_0\} = \left\{f_Z(z)\left[\mu^{(1)}\{\theta(z)\}\right]^2 V^{-1}\{\theta(z)\}\mathbf{D}(K)\right\}^{-1} \sqrt{nh}\mathbf{\Lambda}_n(\alpha_0) + o_p(1). \tag{A.2}
$$

Now write $\Lambda_n(\alpha_0) = \Lambda_{1n}(\alpha_0) + \Lambda_{2n}(\alpha_0)$, where

$$
\Lambda_{1n}(\alpha_0) = n^{-1} \sum_{i=1}^n R_i \pi_{i0}^{-1}(Z_i, \mathbf{U}_i) K_h(Z_i - z) \mu_i^{(1)}(z, \alpha_0) V_i^{-1}(z, \alpha_0) \mathbf{G}(Z_i - z) [Y_i - \mu\{\theta(Z_i)\}]
$$

\n
$$
\Lambda_{2n}(\alpha_0) = n^{-1} \sum_{i=1}^n R_i \pi_{i0}^{-1}(Z_i, \mathbf{U}_i) K_h(Z_i - z) \mu_i^{(1)}(z, \alpha_0) V_i^{-1}(z, \alpha_0) \mathbf{G}(Z_i - z) [\mu\{\theta(Z_i)\} - \mu\{\mathbf{G}(Z_i - z)^T \alpha_0\}].
$$

One can easily show that Λ_{1n} (α_0) is asymptotically normal with mean zero and asymptotic variance

$$
var\{\mathbf{\Lambda}_{1n}(\mathbf{\alpha}_{0})\} = \frac{1}{n}E\left[K_{h}^{2}(Z-z)\left\{\mu^{(1)}(z,\mathbf{\alpha}_{0})\right\}^{2}V^{-2}(z,\mathbf{\alpha}_{0})\left(\frac{R\left[Y-\mu\left\{\theta(Z)\right\}\right]}{\pi_{0}(Z,U)}\right)^{2}\mathbf{G}(Z-z)\mathbf{G}(Z-z)^{T}\right]\right]
$$

$$
= \frac{1}{nh}f_{Z}(z)\left(\mu^{(1)}\{\theta(z)\}\right)^{2}V^{-2}\{\theta(z)\}E\left[\left(\frac{R\left[Y-\mu\left\{\theta(Z)\right\}\right]}{\pi_{0}(Z,U)}\right)^{2}\right]Z=z\right]\mathbf{D}(K^{2})+o(\frac{1}{nh}),
$$

where $D(K^2)$ is defined similarly to $D(K)$ with *K* replaced by K^2 .

Now study Λ_{2n} , which contributes to the leading bias term. One can easily show under MAR, we have

bias
$$
\{\mathbf{\Lambda}_{2n}(\alpha_0)\}
$$
 = $E\left\{K_h(Z-z)\mu^{(1)}(z,\alpha_0)V^{-1}(z,\alpha_0)\left[\mu\{\theta(Z)\}-\mu\{\mathbf{G}(Z-z)^T\alpha_0\}\right]\mathbf{G}(Z-z)\right\} + o_p(1)$
 = $\frac{1}{2}\theta''(z)\left[\mu^{(1)}\{\theta(z)\}\right]^2 V^{-1}\{\theta(z)\}f_Z(z)\mathbf{H}(K) + o(h^2),$ (A.3)

where $H(K)$ is a 2×1 vector with the *k*th element $c_{k+1}(K) \times h^{(k+1)}$. Note that the asymptotic variance of Λ_{2n} is of order $o(1/nh)$ and is asymptotically negligible compared to Λ_{1n} , and the asymptotic covariance of Λ_{1n} and Λ_{2n} is 0. Applying these results to (A.2), simple calculations show that the asymptotic distribution of the IPW estimator $\hat{\theta}_{IPW}(z;\pi)$, the first element of $\hat{\alpha}_{IPW}$, is given in (10).

We next study the distribution of $\hat{\theta}_{IPW}\{z;\pi(\hat{\tau})\}$ when π_0 is estimated consistently at the \sqrt{n} -rate, i.e. $\sqrt{n}(\hat{\tau} - \tau_0) = O_p(1)$, where τ_0 is the true value of τ . Suppose under some regularity conditions, $\partial \hat{\theta}_{IPW} \{z; \pi(\tau)\} / \partial \tau^T$ is bounded in the neighborhood of the τ_0 , *i.e.*,

$$
\partial \hat{\theta}_{IPW}\{z;\pi(\tau)\}/\partial \tau^T|_{\tau \in \mathcal{N}(\tau_0)} = O_p(1),
$$

where $\mathcal{N}(\tau_0) \supset \{ \tau : ||\tau - \tau_0|| < ||\hat{\tau} - \tau_0|| \}$. We have

$$
\sqrt{nh}[\hat{\theta}_{IPW}\{z;\pi(\hat{\boldsymbol{\tau}})\}-\theta(z)]
$$
\n
$$
= \sqrt{nh}[\hat{\theta}_{IPW}\{z;\pi(\hat{\boldsymbol{\tau}})\}-\hat{\theta}_{IPW}\{z;\pi(\tau_0)\}] + \sqrt{nh}[\hat{\theta}_{IPW}\{z;\pi(\tau_0)\}-\theta(z)]
$$
\n
$$
= \sqrt{h}\left[\frac{\partial\hat{\theta}_{IPW}\{z;\pi(\boldsymbol{\tau})\}}{\partial \boldsymbol{\tau}^T}|_{\boldsymbol{\tau}^*}\right] \sqrt{n}(\hat{\boldsymbol{\tau}}-\boldsymbol{\tau}_0) + \sqrt{nh}[\hat{\theta}_{IPW}\{z;\pi(\tau_0)\}-\theta(z)] \tag{A.4}
$$

for some $\boldsymbol{\tau}^* \in {\{\boldsymbol{\tau} : ||\boldsymbol{\tau} - \boldsymbol{\tau}_0|| < ||\hat{\boldsymbol{\tau}} - \boldsymbol{\tau}_0||\}}$. Note $\sqrt{n}(\hat{\boldsymbol{\tau}} - \boldsymbol{\tau}_0) = O_p(1), \partial \hat{\theta}_{IPW} \{z; \pi(\boldsymbol{\tau})\}/\partial \boldsymbol{\tau}^T|_{\boldsymbol{\tau}^*} =$ $O_p(1)$, and $h \to 0$ as $n \to \infty$, the first term in (A.4) is $o_p(1)$. Therefore, the asymptotic distribution of $\hat{\theta}_{IPW}\{z;\pi(\hat{\tau})\}$ when τ is estimated consistently at \sqrt{n} -rate is the same as that of $\hat{\theta}_{IPW}(z;\pi_0)$ when π_0 is known. Similar argument shows that the asymptotic distribution of $\hat{\theta}_{IPW}(z)$ remains the same if ζ is estimated at the \sqrt{n} -rate.

A.3 Proof of Theorem 3: Asymptotic Bias and Asymptotic Variance of AIPW estimator

Following similar arguments as those in Appendix A.2, the asymptotic results hold when the parameters (τ, η) in π and δ are estimated at the \sqrt{n} -rate, or the probability limit of $(\hat{\tau}, \hat{\eta})$ is used in the AIPW kernel estimating equations (4). Denote by $(\tilde{\tau}, \tilde{\eta})$ the probability limit of $(\hat{\tau}, \hat{\eta})$, and let $\tilde{\pi}(Z_i, U_i) = \pi(Z_i, U_i; \tilde{\tau})$, $\delta(Z_i, U_i) = \delta(Z_i, U_i; \tilde{\eta})$. We focus our proof on assuming that $(\widetilde{\tau}, \widetilde{\eta})$ are known. By a linear Taylor expansion of the AIPW estimating function (4) about α_0 , the AIPW kernel estimator satisfies

$$
\sqrt{nh}\{\hat{\boldsymbol{\alpha}}_{AIPW}(z)-\boldsymbol{\alpha}_0\}=-\sqrt{nh}\left\{\boldsymbol{\Gamma}_{n,\delta}(\boldsymbol{\alpha}_*)\right\}^{-1}\boldsymbol{\Lambda}_{n,\delta}(\boldsymbol{\alpha}_0),
$$

where α_* is between $\hat{\alpha}_{AIPW}(z)$ and α_0 ,

$$
\Lambda_{n,\delta}(\alpha) = n^{-1} \sum_{i=1}^n \left\{ R_i \widetilde{\pi}^{-1}(Z_i, \mathbf{U}_i) K_h (Z_i - z) \mu_i^{(1)}(z, \alpha) V_i^{-1}(z, \alpha) \mathbf{G}(Z_i - z) \left[Y_i - \mu \left\{ \mathbf{G}(Z_i - z)^T \alpha \right\} \right] - \left\{ R_i \widetilde{\pi}^{-1}(Z_i, \mathbf{U}_i) - 1 \right\} K_h (Z_i - z) \mu_i^{(1)}(z, \alpha) V_i^{-1}(z, \alpha) \mathbf{G}(Z_i - z) \left[\widetilde{\delta}(Z_i, \mathbf{U}_i) - \mu \left\{ \mathbf{G}(Z_i - z)^T \alpha \right\} \right] \right\},
$$

and $\mathbf{\Gamma}_{n,\delta}(\boldsymbol{\alpha}) = \partial \mathbf{\Lambda}_{n,\delta}(\boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}^T$.

We consider the following two situations:

(1) When model (3) for the selection probability π_{i0} is correctly specified, i.e. $\tilde{\pi}(Z_i, \mathbf{U}_i) =$ $\pi_{i0}\left(Z_i, \bm{U}_i\right);$

(2) When model (6) for $E(Y|Z, U)$ is correctly specified, i.e. $\delta(Z_i, U_i) = E(Y_i|Z_i, U_i)$. As shown in Appendix A.1, $\hat{\alpha}_{AIPW}(z)$ converges to α_0 when either of the above conditions holds. Therefore, $\alpha_* \stackrel{P}{\longrightarrow} \alpha_0$. We first show that under either of the above situations, we have

$$
\Gamma_{n,\delta}(\alpha_*) \xrightarrow{P} -f_Z(z) \left[\mu^{(1)} \{ \theta(z) \} \right]^2 V^{-1} \{ \theta(z) \} D(K). \tag{A.5}
$$

First consider situation (1), i.e., when $\tilde{\pi}(Z_i, \mathbf{U}_i) = \pi_{i0}(Z_i, \mathbf{U}_i)$. The second term of $\Lambda_{n,\delta}(\alpha)$, i.e. the augmentation term, has mean 0 under MAR. It follows that $\Lambda_{n,\delta}(\alpha_*) = \Lambda_n(\alpha_0) + o_p(1)$, where Λ_n is defined in Appendix A.2. Hence $\Gamma_{n,\delta}(\alpha_*) = \Gamma_n(\alpha_0) + o_p(1)$. Therefore $\Gamma_{n,\delta}(\alpha_*)$ has the same probability limit as $\Gamma_n(\alpha_*)$. As shown in Appendix A.2, the probability of limit of $\Gamma_n(\alpha_*)$ is exactly the right hand side of (A.5), and thus (A.5) holds for $\Gamma_{n,\delta}(\alpha_*)$ as well.

Next consider situation (2), i.e., when $\delta(Z_i, \mathbf{U}_i) = E(Y_i | Z_i, \mathbf{U}_i)$. Rewrite $\mathbf{\Lambda}_{n,\delta}(\alpha)$ as

$$
\Lambda_{n,\delta}(\boldsymbol{\alpha}) = n^{-1} \sum_{i=1}^n \left\{ R_i \widetilde{\pi}^{-1}(Z_i, \boldsymbol{U}_i) K_h (Z_i - z) \mu_i^{(1)}(z, \boldsymbol{\alpha}) V_i^{-1}(z, \boldsymbol{\alpha}) \boldsymbol{G}(Z_i - z) \left[Y_i - \widetilde{\delta}(Z_i, \boldsymbol{U}_i) \right] + K_h (Z_i - z) \mu_i^{(1)}(z, \boldsymbol{\alpha}) V_i^{-1}(z, \boldsymbol{\alpha}) \boldsymbol{G}(Z_i - z) \left[\widetilde{\delta}(Z_i, \boldsymbol{U}_i) - \mu \left\{ \boldsymbol{G}(Z_i - z)^T \boldsymbol{\alpha} \right\} \right] \right\}.
$$

One can easily see the first term on the right hand side has mean 0. It follows that

$$
\mathbf{\Lambda}_{n,\delta}(\boldsymbol{\alpha}_{*}) = n^{-1} \sum_{i=1}^{n} K_{h}(Z_{i}-z) \mu_{i}^{(1)}(z,\boldsymbol{\alpha}_{0}) V_{i}^{-1}(z,\boldsymbol{\alpha}) \mathbf{G}(Z_{i}-z) \left[E\left(Y_{i}|Z_{i},\boldsymbol{U}_{i}\right) - \mu \left\{ \mathbf{G}(Z_{i}-z)^{T} \boldsymbol{\alpha}_{0} \right\} \right] + \mathbf{o}_{p}(1).
$$

Differentiating it with respect to α shows that $\Gamma_{n,\delta}(\alpha_*) = \Gamma_n(\alpha_0) + o_p(1)$. Therefore, (A.5) still holds in this situation.

Therefore, when either the π or δ model is correctly specified, we have

$$
\sqrt{nh}\{\hat{\alpha}_{AIPW}(z) - \alpha_0\} = \left\{ f_Z(z) \left[\mu^{(1)}\{\theta(z)\}\right]^2 V^{-1}\{\theta(z)\} D(K) \right\}^{-1} \sqrt{nh} \Lambda_{n,\delta}(\alpha_0) + o_p(1).
$$
\n(A.6)

Write $\Lambda_{n,\delta}(\alpha_0) = \Lambda_{1n,\delta}(\alpha_0) - \Lambda_{2n,\delta}(\alpha_0) + \Lambda_{3n,\delta}(\alpha_0)$, where

$$
\mathbf{\Lambda}_{1n,\delta}\left(\boldsymbol{\alpha}_{0}\right)=n^{-1}\sum_{i=1}^{n}R_{i}\widetilde{\pi}^{-1}(Z_{i},\boldsymbol{U}_{i})K_{h}(Z_{i}-z)\mu_{i}^{(1)}(z,\boldsymbol{\alpha}_{0})V_{i}^{-1}(z,\boldsymbol{\alpha}_{0})\left[Y_{i}-\mu\{\theta(Z_{i})\}\right]\mathbf{G}(Z_{i}-z),
$$

$$
\Lambda_{2n,\delta}(\boldsymbol{\alpha}_0) = n^{-1} \sum_{i=1}^n \{ R_i \widetilde{\pi}^{-1}(Z_i, \boldsymbol{U}_i) - 1 \} K_h(Z_i - z) \mu_i^{(1)}(z, \boldsymbol{\alpha}_0) V_i^{-1}(z, \boldsymbol{\alpha}_0) \left[\widetilde{\delta}(Z_i, \boldsymbol{U}_i) - \mu \{ \theta(Z_i) \} \right] \boldsymbol{G}(Z_i - z),
$$

and

$$
\mathbf{\Lambda}_{3n,\delta}\left(\boldsymbol{\alpha}_{0}\right)=n^{-1}\sum_{i=1}^{n}K_{h}(Z_{i}-z)\mu_{i}^{(1)}(z,\boldsymbol{\alpha}_{0})V_{i}^{-1}(z,\boldsymbol{\alpha}_{0})\left[\mu\{\theta(Z_{i})\}-\mu\{\boldsymbol{G}(Z_{i}-z)^{T}\boldsymbol{\alpha}_{0}\}\right]\boldsymbol{G}(Z_{i}-z).
$$

One can easily see that $\Lambda_{1n,\delta}(\alpha_0)$ and $\Lambda_{2n,\delta}(\alpha_0)$ have mean 0 when either π or δ is correctly specified. The third term $\Lambda_{3n,\delta}(\alpha_0)$ is the leading bias term. When π_i or δ_i is correctly specified, simple calculations show that $E[\Lambda_{3n,\delta}(\boldsymbol{\alpha}_0)]$ is equal to (A.3). It follows that

$$
bias\{\hat{\alpha}_{AIPW}(z)\} = \frac{1}{2}h^2\theta''(z)c_2(K) + o(h^2).
$$

Now study $\Lambda_{1n,\delta} - \Lambda_{2n,\delta}$, which contributes to the leading variance and asymptotic normality. Note that the variance of $\Lambda_{3n,\delta}(\alpha_0)$ is of order $o(1/nh)$, and hence can be ignored asymptotically. Under MAR, we have $E[R|Y, Z, U] = E[R|Z, U] = \pi_0(Z, U)$, the true conditional mean of $[R|Z, U]$. It follows that when either *π* or *δ* is correctly specified, $\Lambda_{1n,\delta}(\alpha_0) - \Lambda_{2n,\delta}(\alpha_0)$ is asymptotically normal with mean 0 and variance

$$
var\left\{\mathbf{\Lambda}_{1n,\delta}(\boldsymbol{\alpha}_0)-\mathbf{\Lambda}_{2n,\delta}(\boldsymbol{\alpha}_0)\right\}=\frac{1}{n}\left[var\left\{\mathbf{\Lambda}_{1,2,\delta}(\boldsymbol{\alpha}_0)\right\}\right],
$$

where

$$
\Lambda_{1,2,\delta}(\boldsymbol{\alpha}_0) = K_h(Z-z)\mu^{(1)}(z,\boldsymbol{\alpha}_0)V^{-1}(z,\boldsymbol{\alpha}_0)\boldsymbol{G}(Z-z) \times \left(\frac{R}{\tilde{\pi}(Z,\boldsymbol{U})}\left[Y-\mu\{\theta(Z)\}\right]-\left\{\frac{R}{\tilde{\pi}(Z,\boldsymbol{U})}-1\right\}\left[\tilde{\delta}(Z,\boldsymbol{U})-\mu\{\theta(Z)\}\right]\right)
$$

Further calculations show that

$$
\frac{1}{n}var\left\{\mathbf{\Lambda}_{1,2,\delta}(\alpha_{0})\right\} = \frac{1}{n}E\left[K_{h}^{2}(Z-z)\left\{\mu^{(1)}(z,\alpha_{0})\right\}^{2}V^{-2}(z,\alpha_{0})G(Z-z)G(Z-z)^{T}\right]
$$
\n
$$
\times \left(\frac{R}{\tilde{\pi}(Z,U)}\left[Y-\mu\{\theta(Z)\}\right]-\left\{\frac{R}{\tilde{\pi}(Z,U)}-1\right\}\left[\tilde{\delta}(Z,U)-\mu\{\theta(Z)\}\right]\right)^{2}\right]
$$
\n
$$
= \frac{1}{nh}f_{Z}(z)\left[\mu^{(1)}\{\theta(z)\}\right]^{2}V^{-2}\{\theta(z)\}E\left[\left(\frac{R}{\tilde{\pi}(Z,U)}\left[Y-\mu\{\theta(Z)\}\right]\right)
$$
\n
$$
-\left\{\frac{R}{\tilde{\pi}(Z,U)}-1\right\}\left[\tilde{\delta}(Z,U)-\mu\{\theta(Z)\}\right]\right)^{2}|Z=z\right]D(K^{2})+o(\frac{1}{nh})
$$

Applying these results to (A.6) and Theorem 3 follows.