
Appendix

Throughout the appendix, we assume that h = h (n) is a sequence such that as n → ∞, h → 0,

and nh → ∞. We also assume that z is an interior point of the support of Z. We assume the

following regularity conditions:

i) θ(·) and fZ(·) satisfy the smoothness assumptions of Fan, et. al. (1995);

ii) The estimating functions in the right hand side of naive kernel estimating equations,

IPW kernel estimating equations, and AIPW kernel estimating equations are twice continuously

differentiable with respect to α at a target point z, and the second derivatives are uniformly

bounded.

A.1 Sketch of the Proof of Theorem 1

If µ(1){θ̃naive (z)} ̸= 0, simple calculations show that the solution of equation (7) for θ̃naive(z) is

µ{θ̃naive(z)} = E (RY |Z = z) /E (R|Z = z) , which is equal to cov (R, Y |Z = z) /E (R|Z = z) +

µ{θ (z)}. This gives the expression for θ̃naive (z) stated in the theorem.

Next study the expression of θ̃IPW (z). The left hand side of (8) is equal to

E

[
E(R|Y, Z,U)

π̃
µ(1){θ̃IPW (z)}V −1{θ̃IPW (z) ;ζ̃}

[
Y − µ{θ̃IPW (z)}

]∣∣∣∣Z = z

]
by taking a double expectation given Y, Z and U. If model (3) of π is correctly specified, then

π̃ = E(R|Z,U). Also under MAR, E(R|Y, Z,U) = E(R|Z,U). Therefore the above quantity

equals to E[µ(1){θ̃IPW (z)}×V −1{θ̃IPW (z) ; ζ̃}[Y −µ{θ̃IPW (z)}]|Z = z]. If µ(1){θ̃IPW (z)} ̸= 0,

solving for θ̃IPW (z) yields µ{θ̃IPW (z)} = E[Y |Z = z] = µ{θ(z)}. Therefore, θ̂IPW (z) is a

consistent estimator of θ(z) when model (3) of π is correctly specified or π0 is known by design.

Now study the expression of θ̃AIPW (z) from (9). Under the MAR assumption (2), the left

hand side of (9) can be rewritten as

E
[
µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}

[
Y − µ{θ̃AIPW (z)}

]
|Z = z

]
+ E

[(
R

π̃
− 1

)
µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}

[
Y − δ̃(Z,U)}

]
|Z = z

]
= 0. (A.1)

If model (3) for π is correctly specified, i.e., π̃ = E(R|Z,U), or model (6) for δ(·) is correctly

specified, i.e., δ̃(Z,U) = E(Y |Z,U), one can easily see that the second term of (A.1) is 0. Hence

(A.1) is equal to

E
[
µ(1){θ̃AIPW (z)}V −1{θ̃AIPW (z) ;ζ̃}

[
Y − µ{θ̃AIPW (z)}

]
|Z = z

]
= 0.

It follows that if µ(1){θ̃AIPW (z)} ̸= 0, we have θ̃AIPW (z) = θ(z), i.e., θ̂AIPW (z) is a consistent

estimator of θ(z).
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A.2 Proof of Theorem 2: Asymptotic Bias and Variance of the IPW Estimator

We first assume that π0 is known by design and prove that the asymptotic distribution of

θ̂IPW (z) is given in (10). We also assume that the variance parameter ζ in the working variance

V is known. We will then extend the results when π and ζ are estimated. For any interior

point z, reparameterize α as
{
θ (z) , hθ′ (z)

}T
and denote by θ0(z) the true value of θ(z), α0 =

{θ0(z), hθ′0(z)}T and α̂IPW (z) the solution of the local linear IPW kernel estimating equations.

A Taylor expansion of the local linear IPW kernel estimating equations gives

√
nh{αIPW (z)−α0} = −

√
nh {Γn(α∗)}−1Λn(α0),

where α∗ is between α̂IPW (z) and α0, and

Λn(α) = n−1
n∑

i=1

Riπ
−1
i0 (Zi,U i)Kh(Zi − z)µ

(1)
i (z,α)V −1

i (z,α)G(Zi − z)[Yi − µ{G(Zi − z)Tα}],

where µ
(1)
i (z,α) = µ(1){G(Zi − z)Tα} and Vi(z,α) = V [µ{G(Zi − z)Tα}; ζ0] , Γn(α) =

∂Λn(α)/∂αT .

Using the results in Appendix A.1, we have α̂IPW (z) → α0 in probability. Therefore,

α∗
P→ α0. Under the MAR assumption (2), simple calculations show that

Γn(α∗) = −E

[
Kh(Z − z)

{
µ(1)(z,α0)

}2
V −1(z,α0)G(Z − z)G(Z − z)T

]
+ op(1)

= −fZ(z)
(
µ(1){θ(z)}

)2
V −1{θ(z)}D(K) + op(1)

where D (K) is a 2 × 2 matrix with the (j, k)th element cj+k−2(K) × h(j+k−2), and cr(K) =∫
srK(s)ds. It follows that

√
nh{α̂IPW (z)−α0} =

{
fZ(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}D(K)

}−1√
nhΛn(α0) + op(1). (A.2)

Now write Λn(α0) = Λ1n(α0) +Λ2n(α0), where

Λ1n(α0) = n−1
n∑

i=1

Riπ
−1
i0 (Zi,U i)Kh(Zi − z)µ

(1)
i (z,α0)V

−1
i (z,α0)G(Zi − z)[Yi − µ{θ(Zi)}]

Λ2n(α0) = n−1
n∑

i=1

Riπ
−1
i0 (Zi,U i)Kh(Zi − z)µ

(1)
i (z,α0)V

−1
i (z,α0)G(Zi − z)[µ{θ(Zi)} − µ{G(Zi − z)Tα0}].

One can easily show that Λ1n (α0) is asymptotically normal with mean zero and asymptotic

variance

var{Λ1n(α0)} =
1

n
E

[
K2

h(Z − z)
{
µ(1)(z,α0)

}2
V −2(z,α0)

(
R [Y − µ {θ(Z)}]

π0(Z,U)

)2

G(Z − z)G(Z − z)T

]

=
1

nh
fZ(z)

(
µ(1){θ(z)}

)2
V −2{θ(z)}E

[(
R [Y − µ {θ(Z)}]

π0(Z,U)

)2
∣∣∣∣∣Z = z

]
D(K2) + o(

1

nh
),
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where D(K2) is defined similarly to D(K) with K replaced by K2.

Now study Λ2n, which contributes to the leading bias term. One can easily show under

MAR, we have

bias {Λ2n(α0)} = E
{
Kh(Z − z)µ(1)(z,α0)V

−1(z,α0)
[
µ {θ(Z)} − µ

{
G(Z − z)Tα0

}]
G(Z − z)

}
+ op(1)

=
1

2
θ′′(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}fZ(z)H(K) + o(h2), (A.3)

where H(K) is a 2× 1 vector with the kth element ck+1(K)×h(k+1). Note that the asymptotic

variance of Λ2n is of order o(1/nh) and is asymptotically negligible compared to Λ1n, and the

asymptotic covariance of Λ1n and Λ2n is 0. Applying these results to (A.2), simple calculations

show that the asymptotic distribution of the IPW estimator θ̂IPW (z;π), the first element of

α̂IPW , is given in (10).

We next study the distribution of θ̂IPW {z;π(τ̂ )} when π0 is estimated consistently at the
√
n-rate, i.e.

√
n(τ̂−τ 0) = Op(1), where τ 0 is the true value of τ . Suppose under some regularity

conditions, ∂θ̂IPW {z;π(τ )}/∂τT is bounded in the neighborhood of the τ 0, i.e.,

∂θ̂IPW {z;π(τ )}/∂τT |τ∈N (τ0) = Op(1),

where N (τ 0)⊃{τ : ||τ − τ 0|| < ||τ̂ − τ 0||}. We have

√
nh[θ̂IPW {z;π(τ̂ )} − θ(z)]

=
√
nh[θ̂IPW {z;π(τ̂ )} − θ̂IPW {z;π(τ0)}] +

√
nh[θ̂IPW {z;π(τ0)} − θ(z)]

=
√
h

[
∂θ̂IPW {z;π(τ )}

∂τT
|τ∗

]
√
n(τ̂ − τ 0) +

√
nh[θ̂IPW {z;π(τ0)} − θ(z)] (A.4)

for some τ ∗ ∈ {τ : ||τ−τ 0|| < ||τ̂−τ 0||}. Note
√
n(τ̂−τ 0) = Op(1), ∂θ̂IPW {z;π(τ )} /∂τT |τ∗ =

Op(1), and h → 0 as n → ∞, the first term in (A.4) is op(1). Therefore, the asymptotic

distribution of θ̂IPW {z;π(τ̂ )} when τ is estimated consistently at
√
n-rate is the same as that

of θ̂IPW (z;π0) when π0 is known. Similar argument shows that the asymptotic distribution of

θ̂IPW {z} remains the same if ζ is estimated at the
√
n-rate.

A.3 Proof of Theorem 3: Asymptotic Bias and Asymptotic Variance of AIPW
estimator

Following similar arguments as those in Appendix A.2, the asymptotic results hold when the

parameters (τ ,η) in π and δ are estimated at the
√
n-rate, or the probability limit of (τ̂ , η̂)

is used in the AIPW kernel estimating equations (4). Denote by (τ̃ , η̃) the probability limit

of (τ̂ , η̂), and let π̃(Zi,U i) = π(Zi,U i; τ̃ ) , δ̃ (Zi,U i) = δ (Zi,U i; η̃). We focus our proof on

assuming that (τ̃ , η̃) are known. By a linear Taylor expansion of the AIPW estimating function

(4) about α0, the AIPW kernel estimator satisfies

√
nh{α̂AIPW (z)−α0} = −

√
nh {Γn,δ(α∗)}−1Λn,δ(α0),
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where α∗ is between α̂AIPW (z) and α0,

Λn,δ(α) = n−1
n∑

i=1

{
Riπ̃

−1(Zi,U i)Kh(Zi − z)µ
(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
Yi − µ

{
G(Zi − z)Tα

}]
−

{
Riπ̃

−1(Zi,U i)− 1
}
Kh(Zi − z)µ

(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
δ̃(Zi,U i)− µ

{
G(Zi − z)Tα

}]}
,

and Γn,δ(α) = ∂Λn,δ(α)/∂αT .

We consider the following two situations:

(1) When model (3) for the selection probability πi0 is correctly specified, i.e. π̃(Zi,U i) =

πi0 (Zi,U i);

(2) When model (6) for E(Y |Z,U) is correctly specified, i.e. δ̃(Zi,U i) = E(Yi|Zi,U i).

As shown in Appendix A.1, α̂AIPW (z) converges to α0 when either of the above conditions

holds. Therefore, α∗
P−→ α0. We first show that under either of the above situations, we have

Γn,δ(α∗)
P−→ −fZ(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}D(K). (A.5)

First consider situation (1), i.e., when π̃(Zi,U i) = πi0 (Zi,U i). The second term of Λn,δ(α),

i.e. the augmentation term, has mean 0 under MAR . It follows that Λn,δ(α∗) = Λn(α0)+op(1),

where Λn is defined in Appendix A.2. Hence Γn,δ(α∗) = Γn(α0) + op(1). Therefore Γn,δ(α∗)

has the same probability limit as Γn(α∗). As shown in Appendix A.2, the probability of limit

of Γn(α∗) is exactly the right hand side of (A.5), and thus (A.5) holds for Γn,δ(α∗) as well.

Next consider situation (2), i.e., when δ̃(Zi,U i) = E(Yi|Zi,U i). Rewrite Λn,δ(α) as

Λn,δ(α) = n−1
n∑

i=1

{
Riπ̃

−1(Zi,U i)Kh(Zi − z)µ
(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
Yi − δ̃(Zi,U i)

]
+ Kh(Zi − z)µ

(1)
i (z,α)V −1

i (z,α)G(Zi − z)
[
δ̃(Zi,U i)− µ

{
G(Zi − z)Tα

}]}
.

One can easily see the first term on the right hand side has mean 0. It follows that

Λn,δ(α∗) = n−1
n∑

i=1

Kh(Zi−z)µ
(1)
i (z,α0)V

−1
i (z,α)G(Zi−z)

[
E (Yi|Zi,U i)− µ

{
G(Zi − z)Tα0

}]
+op(1).

Differentiating it with respect to α shows that Γn,δ(α∗) = Γn(α0) + op(1). Therefore, (A.5)

still holds in this situation.

Therefore, when either the π or δ model is correctly specified, we have

√
nh{α̂AIPW (z)−α0} =

{
fZ(z)

[
µ(1){θ(z)}

]2
V −1{θ(z)}D(K)

}−1√
nhΛn,δ(α0) + op(1).

(A.6)

Write Λn,δ(α0) = Λ1n,δ(α0)−Λ2n,δ(α0) +Λ3n,δ(α0), where

Λ1n,δ (α0) = n−1
n∑

i=1

Riπ̃
−1(Zi,U i)Kh(Zi − z)µ

(1)
i (z,α0)V

−1
i (z,α0) [Yi − µ{θ(Zi)}]G(Zi − z),
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Λ2n,δ (α0) = n−1
n∑

i=1

{Riπ̃
−1(Zi,U i)−1}Kh(Zi−z)µ

(1)
i (z,α0)V

−1
i (z,α0)

[
δ̃(Zi,U i)− µ{θ(Zi)}

]
G(Zi−z),

and

Λ3n,δ (α0) = n−1
n∑

i=1

Kh(Zi−z)µ
(1)
i (z,α0)V

−1
i (z,α0)

[
µ{θ(Zi)} − µ{G(Zi − z)Tα0}

]
G(Zi−z).

One can easily see that Λ1n,δ(α0) and Λ2n,δ(α0) have mean 0 when either π or δ is correctly

specified. The third term Λ3n,δ(α0) is the leading bias term. When πi or δi is correctly specified,

simple calculations show that E [Λ3n,δ(α0)] is equal to (A.3). It follows that

bias{α̂AIPW (z)} =
1

2
h2θ′′(z)c2(K) + o(h2).

Now study Λ1n,δ−Λ2n,δ, which contributes to the leading variance and asymptotic normality.

Note that the variance ofΛ3n,δ (α0) is of order o(1/nh), and hence can be ignored asymptotically.

Under MAR, we have E[R|Y, Z,U ] = E[R|Z,U ] = π0(Z,U), the true conditional mean of

[R|Z,U ]. It follows that when either π or δ is correctly specified, Λ1n,δ(α0) − Λ2n,δ(α0) is

asymptotically normal with mean 0 and variance

var {Λ1n,δ(α0)−Λ2n,δ(α0)} =
1

n
[var {Λ1,2,δ(α0)}] ,

where

Λ1,2,δ(α0) = Kh(Z − z)µ(1)(z,α0)V
−1(z,α0)G(Z − z)

×
(

R

π̃(Z,U)
[Y − µ{θ(Z)}]−

{
R

π̃(Z,U)
− 1

}[
δ̃(Z,U)− µ{θ(Z)}

])
Further calculations show that

1

n
var {Λ1,2,δ(α0)} =

1

n
E

[
K2

h(Z − z)
{
µ(1)(z,α0)

}2
V −2(z,α0)G(Z − z)G(Z − z)T

×
(

R

π̃(Z,U)
[Y − µ{θ(Z)}]−

{
R

π̃(Z,U)
− 1

}[
δ̃(Z,U)− µ{θ(Z)}

])2
]

=
1

nh
fZ(z)

[
µ(1){θ(z)}

]2
V −2{θ(z)}E

[(
R

π̃(Z,U)
[Y − µ{θ(Z)}]

−
{

R

π̃(Z,U)
− 1

}[
δ̃(Z,U)− µ{θ(Z)}

])2

|Z = z

]
D(K2) + o(

1

nh
)

Applying these results to (A.6) and Theorem 3 follows.
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