Identification of the Ah-receptor structural determinants for ligand preferences

Supplemental materials: Figure S1 Figure S2 Figure S3 Figure S4

Yongna Xing^{1,2,5}, Manabu Nukaya^{1,3}, Kenneth A Satyshur¹, Li Jiang¹, Vitali Stanevich¹, Elif Nihal Korkmaz⁴, Lisa Burdette¹, Gregory D. Kennedy³, Qiang Cui⁴, Christopher A. Bradfield^{1,2}

¹McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin 53706, USA

²Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA

³Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA

⁴Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin 53706, USA

⁵To whom correspondence should be addressed:

E-mail: xing@oncology.wisc.edu; Phone 608-262-8376 Fax 608-262-2824 McArdle Laboratory for Cancer Research 1400 University Avenue Madison, WI, 53706

Figure S1. Sequence alignment of human HIF2 α and the B allele of mouse AHR. The "belt" sequence and loop H β -I β are highlighted. Identical residues are highlighted in yellow.

Figure S2. The AHR residues lining the ligand binding pocket. (A) Stereo of the model of the mAHR-LBD bound to TCDD, illustrating residues lining the ligand binding pocket. These include F281, T283, H285, F289, P291, L302, Y304, F318, I319, C327, M334, M337, F345, L347, V357, S359, A375, Q377, and are selectively labeled. (B) Stereo of the model of the mAHR-LBD bound to TCDD, illustrating mutations shown in previous studies (29) that abolish (dark green) or compromise ligand binding (green).

	290	300	310	320	330
AHR-B	IFRTKHKLDFTPI	GCDAKGQLI <mark>LG</mark>	TEVELCTRGS	GYQFIHAAD <mark>I</mark> I	LHCAES
AHR-D	IFRTKHKLDFTPI	GCDAKGRIVLG	TEAELCTRGS	GYQFIHAADMI	LYCAES
drAHR1a	MFKTK Y KLDFTPI	a <mark>cd</mark> tnwnf <mark>vlg</mark>	TEAELCNSGS	GYQFIHAADM	I <mark>YCAE</mark> G
	340	350	360	370	
AHR-B	340	350 VFRLLAKHSRWF	360 R <mark>WVQSNARLIY</mark> I	370 R <mark>NGRPDYII</mark> AT	QRP
AHR-B AHR-D	340 HIRMIKTGESGMT HIRMIKTGESGMI	350 VFRLLAKHSRWF VFRLLTKNNRWJ	360 RWVQSNARLIYI RWVQSNARLIYI	370 RNGRPDYIIAT KNGRPDYII <mark>V</mark> I	'QRP 'QRP

Figure S3. Sequence alignment of mouse AHR B-allele, D-allele, and the nonfunctional allele of zebra fish (drAHR1a). Identical residues are highlighted in yellow. V375 in mouse D-allele and Y285/T375 in drAHR1a are highlighted in bold.

Figure S4. Alignment of crystal structures of HIF2α bound to artificial ligands (PDB codes: 3H7W, 3H82, 3F1N) (blue) and its NMR structures in the absence of ligands (PDB code: 2A24) (yellow). The "belt" in 3H7W is shown in cyan.