WEB APPENDIX

Case ascertainment

This study was approved by the IRB at the Beth Israel Deaconess Medical Center (BIDMC). We identified consecutive patients ≥21 years of age admitted to the BIDMC between April 1, 1999, and October 31, 2008, with neurologist-confirmed ischemic stroke and residing in the Boston metropolitan region. Patients with in-hospital strokes or transient ischemic attacks were excluded. Trained abstractors recorded data on patient demographics, presenting symptoms and medical history from medical records. As in previous studies (1), we restricted our analysis to patients who lived within 40 km of the air pollution monitoring site to reduce exposure error. This analysis was limited to dates when data on constituents are available (January 1, 2003 to October 31, 2008).

Exposure assessment

 $PM_{2.5}$ and particle constituents. We obtained continuous measurements of $PM_{2.5}$ and daily (9AM-9AM) constituent concentrations from the Harvard–U.S. Environmental Protection Agency (EPA) Supersite in Boston, MA, located <1 km from the study site (2). $PM_{2.5}$ measured at this site is a strong proxy for personal exposure to ambient particles in communities surrounding Boston (3, 4). Where $PM_{2.5}$ data were missing (<10% of hourly measurements), levels were imputed using regression modeling, including a long-term time trend, day of week, hour of day, temperature, relative humidity, barometric pressure and nitrogen dioxide as predictors.

Covariates. Daily (9AM-9AM) meteorological data including temperature, relative humidity, and barometric pressure were calculated from the hourly surface observations of the National Weather Service First Order Station at Logan Airport.

Statistical analysis

We used the time-stratified case-crossover study design (5, 6) to assess the association between ischemic stroke onset and levels of constituents in the 24 hours preceding each event. In this design, each subject's exposure prior to a case-defining event (case period) is compared with his or her exposure during periods when the subject did not become a case (control period). PM_{2.5} levels during the 24 hours preceding each event were compared to levels on

other days of the same month and same day of the week as the case period. This design has been shown to effectively control for seasonality, time-trends, and chronic and slowly-varying potential confounders (7).

In all analyses, constituents were assessed relative to the time of stroke symptom onset. When the date of stroke onset is known but the time cannot be estimated (n=123), we assumed that symptom onset occurred at 9AM. We estimated the level of each constituent by taking a weighted average of the levels from the two days containing the 24 hours prior to stroke onset.

We performed conditional logistic regression stratifying on each hospitalization to obtain estimates of odds ratios (OR) and 95 percent confidence intervals (CI) associated with an interquartile-range increase in each constituent in separate models. Because of the sampling strategy, these OR's are unbiased estimates of the incidence rate ratio (IRR). We controlled for ambient temperature and dew point temperature using natural cubic splines (3 degrees of freedom each) and barometric pressure (linear continuous variable). We calculated estimates separately for the warm (April to November) and cold season (October to March). Analyses were performed using the R statistical package (R v 2.8.1) (8).

References

- 1. Wellenius GA, Burger M, Coull BA, et al. Ambient Air Pollution and the Risk of Acute Ischemic Stroke. *Arch Intern Med* In Press.
- 2. Madrigano J, Baccarelli A, Mittleman MA, et al. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. *Environ Health Perspect* 2011;119(7):977-82.
- 3. Sarnat JA, Brown KW, Schwartz J, et al. Ambient gas concentrations and personal particulate matter exposures: implications for studying the health effects of particles. *Epidemiology* 2005;16(3):385-95.
- 4. Sarnat SE, Coull BA, Schwartz J, et al. Factors affecting the association between ambient concentrations and personal exposures to particles and gases. *Environ Health Perspect* 2006;114(5):649-54.
- 5. Levy D, Lumley T, Sheppard L, et al. Referent selection in case-crossover analyses of acute health effects of air pollution. *Epidemiology* 2001;12(2):186-92.
- 6. Lumley T, Levy D. Bias in the case-crossover design: implications for studies of air pollution. *Environmetrics* 2000;11:689-704.
- Schwartz J, Zanobetti A, Bateson TF. Morbidity and mortality among elderly residents in cities with daily PM measurements. *Revised Analyses of Time-Series Studies of Air Pollution and Health Special Report*. Boston: Health Effects Institute, 2003:25-58.
- R Development Core Team. R: A language and environment for statistical computing.
 Vienna, Austria: R Foundation for Statistical Computing, 2008.

Web Table 1. Incidence Rate Ratio and 95% Confidence Intervals for the Association between an IQR Increase in Constituent Proportion and Ischemic Stroke Onset in the following 24 Hours.

Constituent	Incidence Rate Ratio	95% Confidence Interval		
Silicon	0	0, 9.16E+03		
Chlorine	0.67	0, 1.04E+03		
Potassium	6.03	0, 3.22E+05		
Manganese	0	3.31E-322, 9.48E+85		
Zinc	0	0, 2.27E+23		
Sodium	0	0, 6.10		
Copper	0	0, 7.45E+106		
Aluminum	0	0, 2.88E+12		
Calcium	0	0, 1.03E+13		
Bromine	9.814E+22	0, 1.23E+293		
Lead	1.371E+09	0, 3.51E+192		
Selenium	0	0, 3.03E+287		
Titanium	0	0, 1.67E+168		
Vanadium	7.535E+55	0, 3.18E+176		
Iron	0	0, 9.77E+06		
Sulfur	0.53	0, 21.74		
Nickel	3.37E+84	0, 2.33E+264		
Black Carbon	0.761	0.07, 8.55		

Web Table 2. Estimates for the Association between an IQR Increase in Constituent Concentration and Ischemic Stroke Onset in the following 24 Hours and the Interaction between Constituent and PM_{2.5}.

	Model		Standard P Error		IRR	95% CI
Constituent	Term	Parameter Estimate				
Silicon	PM _{2.5}	0.171	0.083	0.04	1.187	1.008, 1.398
	Constituent	-0.046	0.105	0.66	0.955	0.778 1.173
	PM _{2.5} xConstituent	-0.013	0.040	0.74	0.987	0.912, 1.068
Chlorine	PM _{2.5}	0.108	0.063	0.088	1.114	0.984, 1.260
	Constituent	-0.003	0.006	0.64	0.997	0.985, 1.009
	PM _{2.5} xConstituent	0.003	0.004	0.38	1.003	0.996, 1.011
Potassium	PM _{2.5}	0.134	0.062	0.032	1.143	1.011, 1.291
	Constituent	0.017	0.031	0.59	1.017	0.957, 1.080
	PM _{2.5} xConstituent	-0.005	0.009	0.59	0.995	0.977, 1.013
Manganese	PM _{2.5}	0.078	0.096	0.42	1.081	0.896, 1.305
	Constituent	-0.096	0.107	0.37	0.908	0.737, 1.120
	PM _{2.5} xConstituent	0.039	0.049	0.43	1.039	0.944, 1.144
Zinc	PM _{2.5}	0.123	0.089	0.17	1.131	0.950, 1.347
	Constituent	-0.072	0.082	0.38	0.931	0.793, 1.093
	PM _{2.5} xConstituent	0.016	0.032	0.61	1.016	0.955, 1.081
Sodium	PM _{2.5}	0.198	0.100	0.048	1.219	1.002, 1.483
	Constituent	-0.099	0.123	0.42	0.905	0.712, 1.151
	PM _{2.5} xConstituent	-0.009	0.043	0.84	0.992	0.911, 1.079
Copper	PM _{2.5}	0.117	0.065	0.073	1.124	0.989, 1.278
	Constituent	-0.020	0.073	0.78	0.980	0.849, 1.131
	PM _{2.5} xConstituent	0.008	0.023	0.73	1.008	0.964, 1.054
Aluminum	PM _{2.5}	0.164	0.090	0.07	1.178	0.986, 1.406
	Constituent	-0.029	0.103	0.78	0.971	0.794, 1.188
	PM _{2.5} xConstituent	-0.007	0.034	0.84	0.993	0.928, 1.062
Calcium	PM _{2.5}	0.231	0.126	0.066	1.260	0.985, 1.613
	Constituent	0.051	0.120	0.67	1.053	0.832, 1.331
	PM _{2.5} xConstituent	-0.047	0.055	0.39	0.954	0.856, 1.063
Bromine	PM _{2.5}	0.216	0.103	0.036	1.241	1.014, 1.517
	Constituent	0.068	0.111	0.54	1.070	0.861, 1.330
	PM _{2.5} xConstituent	-0.049	0.049	0.32	0.952	0.865, 1.048
Lead	PM _{2.5}	0.136	0.086	0.11	1.146	0.969, 1.355
	Constituent	0.014	0.108	0.89	1.014	0.821, 1.253

Modeling Elemental Constituents and Health Effects		Page 7 of 7				
	PM _{2.5} xConstituent	-0.007	0.045	0.87	0.993	0.909, 1.084
Selenium	PM _{2.5}	0.082	0.074	0.27	1.085	0.939, 1.254
	Constituent	-0.026	0.082	0.75	0.974	0.830, 1.143
	PM _{2.5} xConstituent	0.026	0.031	0.4	1.027	0.966, 1.091
Titanium	PM _{2.5}	0.156	0.092	0.089	1.169	0.977, 1.400
	Constituent	0.064	0.127	0.62	1.066	0.830, 1.368
	PM _{2.5} xConstituent	-0.024	0.046	0.61	0.977	0.892, 1.069
Vanadium	PM _{2.5}	0.101	0.082	0.21	1.107	0.943, 1.299
	Constituent	0.042	0.079	0.6	1.043	0.893, 1.218
	PM _{2.5} xConstituent	-0.00001	0.031	1.000	1.000	0.941, 1.063
Iron	PM _{2.5}	0.122	0.129	0.34	1.130	0.878, 1.455
	Constituent	0.011	0.114	0.92	1.011	0.808, 1.265
	PM _{2.5} xConstituent	-0.0002	0.053	1.000	1.000	0.902, 1.109
Sulfur	PM _{2.5}	0.171	0.128	0.18	1.186	0.923, 1.524
	Constituent	0.033	0.139	0.81	1.034	0.787, 1.359
	PM _{2.5} xConstituent	-0.016	0.026	0.53	0.984	0.935, 1.035
Nickel	PM _{2.5}	0.107	0.083	0.2	1.113	0.945, 1.310
	Constituent	0.082	0.103	0.43	1.085	0.887, 1.328
	PM _{2.5} xConstituent	-0.008	0.039	0.84	0.992	0.920, 1.070
Black Carbon PM _{2.5}		0.020	0.122	0.87	1.020	0.804, 1.295
	Constituent	0.186	0.126	0.14	1.205	0.942, 1.542
	PM _{2.5} xConstituent	-0.003	0.045	0.94	0.997	0.913, 1.088

Abbreviations: CI, confidence interval; IRR, incidence rate ratio