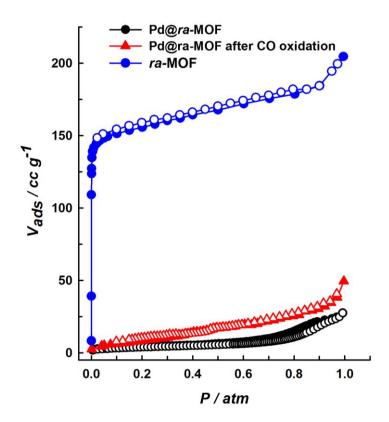
## **Supporting Information**

## In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework supported palladium nanoparticles

<sup>a</sup> Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea. E-mail: <a href="mailto:hoirimoon@unist.ac.kr">hoirimoon@unist.ac.kr</a>

Fax: +82-52-217-2019; Tel: +82-52-217-2928


<sup>c</sup> School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea. E-mail: <a href="mailto:shjoo@unist.ac.kr">shjoo@unist.ac.kr</a>

Fax: +82-52-217-2019; Tel: +82-52-217-2522

$$-N_{\text{Ni}} = -N_{\text{Ni}} = -N_$$

**Figure S1.** Synthetic scheme of ra-MOF by self-assembly of  $[Ni(C_{10}H_{26}N_6)]^{2+}$  and bpdc<sup>2-</sup>

<sup>&</sup>lt;sup>b</sup> Department of Chemistry, BK21 School of Chemical Materials Science and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.E-mail:jimankim@skku.edu Fax: +82-31-290-7075; Tel: +82-31-290-7074



**Figure S2.** Comparison of  $N_2$  sorption data for ra-MOF and Pd@ra-MOF before and after CO oxdiation reaction

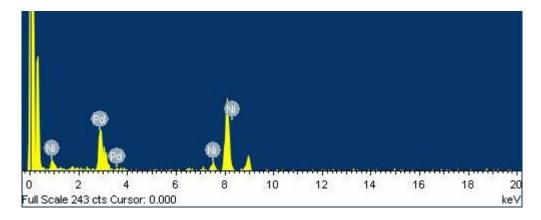
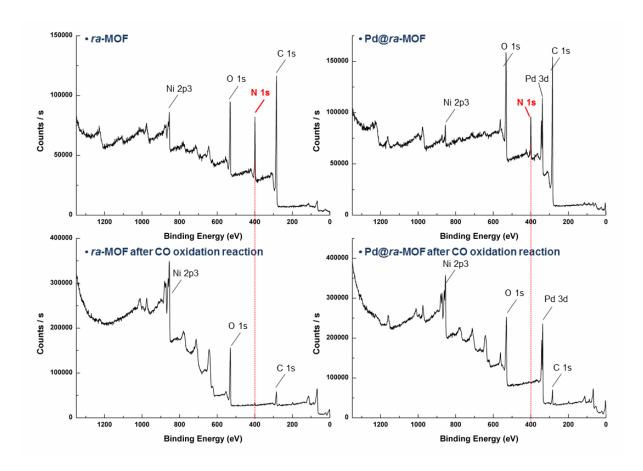




Figure S3. EDS result of Pd@ra-MOF



**Figure S4.** XPS wide scan spectra for *ra*-MOF and Pd@*ra*-MOF before and after CO oxidation reaction, respectively.

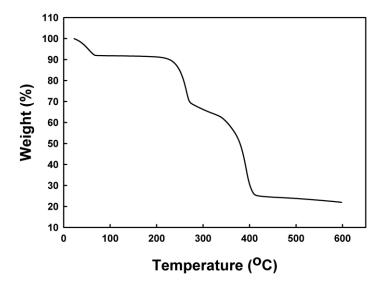
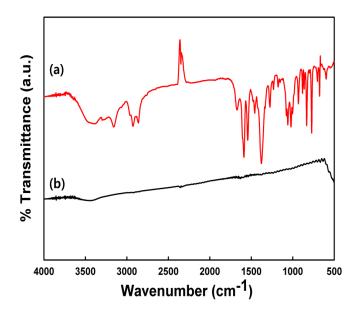
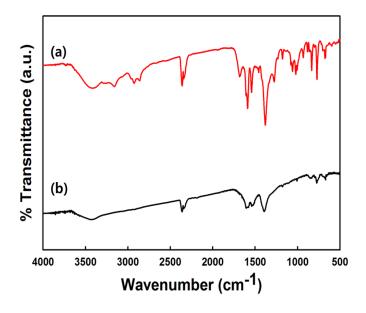





Figure S5. TGA trace of ra-MOF



**Figure S6.** Comparison of IR spectra for ra-MOF (a) before and (b) after CO oxdiation reaction upto 500  $^{\circ}$ C.



**Figure S7.** Comparison of IR spectra for Pd@*ra*-MOF (a) before and (b) after CO oxdiation reaction upto 300 °C.