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ABSTRACT Examples of stable cycling are discussed for two-
locus, two-allele, deterministic, discrete-time models with con-
stant fitnesses. The cases that cycle were found by using numerical
techniques to search for stable Hopf bifurcations. One conse-
quence ofthe results is that apparent cases of directional selection
may be due to stable cycling.

The causes ofcycling in populations, which include predator-prey
oscillations, the role of time delays, and amplification of envi-
ronmental disturbances have long been a topic of research in
population biology (1, 2). Selection within a single population
would be an alternate, and possibly quite general, explanation
ofcycling. These cycles could provide an explanation ofcurious
behavior observed in one-locus genetic experiments. In this
paper, one example of stable cycling in a discrete-time, con-
stant-fitness, two-locus, two-allele model will be discussed,
and general features of all the examples I have found thus far
will also be included. In ref. 3 cycling that results from
genotype-environment interactions is discussed. The only
other reported instance of stable cycling due to genetic causes
alone is the independent work ofAkin (4), who recently proved
the existence of stable cycles arising from a Hopf bifurcation in
the continuous time, two-locus, two-allele model. This paper
complements and extends the work of Akin by dealing with a
discrete-time model and examining the behavior of the cycling
populations, rather than proving the existence of cycles. Akin
employed an asymptotic, analytic approach, whereas I have
used a numerical approach.

BACKGROUND AND METHODS
The model used in this study is the usual deterministic two-al-
lele discrete-generation model (5) with alleles A and a at the A
locus and B and b at the B locus. The frequencies (and "names")
of the four chromosomal types AB, Ab, aB, ab are x1, X2, X3, X4,
respectively. Let to (with wf = wji and W14 = W23 = 1) be the
fitness of an individual with chromosomes xi and xj.

Let D be the disequilibrium,
D = x1x4 -X2X3,

PA be the frequency of allele A, PB that of allele B, so that

PA = Xl + X2, PB = X1 + X3.

Finally, let r be the recombination rate between the two loci.
The evolution of this system is described by

xi' = w (xiwi + eirD) i = 1 to 4.

Here el = e4 =6-1,82= 83 = 1, and the marginal mean fitness
of xi is

4

io=1

and the mean fitness of the population is
4

w= 2d wixi.

The technique used to identify cases that cycle is a numerical
search for stable Hopf bifurcation (6, 7) based on the ideas in
refs. 8 and 9. The first step is to pick (at random) a point PA, PB,
D and a value for r. Then various fitness matrices corresponding
to this equilibrium are generated (because this is a linear system
as explained in ref. 8). Stable Hopf bifurcation (6, 7) is sought
by looking for examples where the Jacobian

air ax1'/Xx~,
evaluated at the equilibrium, has a real eigenvalue between
-1 and 1 and a pair ofcomplex eigenvalues with modulus close
to one. Next the value of r is varied to yield a single-parameter
family offitness matrices and values of r corresponding to a sin-
gle equilibrium point. The resulting models are then iterated
to check for stable cycling, arising as a result of the Hopf
bifurcation, for values of r where the equilibrium point is
unstable.

RESULTS
A number ofexamples exhibiting stable cycling were generated
in the fashion described. There are several properties common
to all of these examples. First, the period ofthe cycle for values
of r near the bifurcation point is always greater than 100 gen-
erations, and the cycle period increases as r is moved away from
the point of bifurcation. The period at the bifurcation point can
be simply calculated from the imaginary part ofthe eigenvalues
at the bifurcation point (7). The eigenvalues at the bifurcation
point are of the form e" , and the period is 2Xr/@. Because this
last quantity is not in general an integer, the cycles do not in
general have a period that is an integer. Second, in all the nu-
merical examples, the fitness matrix

BB Bb bb
AA WI W2 W3
Aa W4 W5 W6

aa W7 W8 W9

always satisfies the inequality:

W5 > max (w2,w4,w6,w8) [1]
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Table 1. A fitness matrix that leads to stable cycling,
for r = 0.20632 -A, for 0 5 A c 0.04182

BB Bb bb
AA 0.81804 + 0.499A 0.61018 + 1.61288A 1.33068
Aa 0.42623 + 2.64925A 1.0 0.22458
aa 0.80724 0.46357 1.41881

Also at least three of the following four inequalities hold:

w4 < min (wl,w7)

w6 < min (w3,w9) [2]
w2 < min (w1,w3)

w8 < min (w7,w9).
Thus, strong epistasis is necessary for cycling.

Finally, in all the cases examined, the stable cycle disap-
peared as a result of a "blue sky" bifurcation (ref. 10, page 567;
ref. 11, chapter 12). In this bifurcation, as r is varied one por-
tion of the cycle approaches a saddle point and then suddenly
disappears. Consequently, as r is varied in this manner, the
period of the cycle approaches infinity, and each cycle consists
ofa long time period spent near the equilibrium, and a relatively
short time away from the equilibrium, with corresponding rel-
atively rapid changes in gene frequencies. A specific example
with these features is outlined in Table 1 and illustrated in Figs.
1 and 2. The equilibrium point is approximately, PA = 0.88568,
PB = 0.82474, D = 0.05414. The Hopf bifurcation occurs at A
= 0 (see Table 1), and the blue sky bifurcation occurs at ap-
proximately A = 0.04182.

DISCUSSION
The appearance of cycling in two-locus, two-allele models
shown here for discrete time and shown independently by Akin
(4) for continuous time has a number of implications for popu-
lation biology and genetics. First, another potential cause of
cycling in populations has been shown. Even though the fitness
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FIG. 1. The stable cycle for the fitness matrix of Table 1, for r =
0.175 (A = 0.03132). D cycles in a similar fashion.
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FIG. 2. The stable cycle for the fitness matrix of Table 1, for r =
0.1648 (A = 0.04152), near the blue sky bifurcation. D cycles in a sim-
ilar fashion. Note the long period of little gene frequency change.

values required seem rather special-satisfying Eqs. 1 and 2
with large epistasis-the marginal fitnesses (5) at each single
locus are quite reasonable. Also, in the context ofmore loci and
more alleles, it is possible that cycling might arise with more
reasonable fitness values. The form of the fitness matrices that
lead to stable cycling is similar to that ofthe fitness matrices that
give rise to marginal underdominance at a stable equilibrium
(8). Most cases of stable cycling, in fact, exhibit induced un-
derdominance for those values of r when the equilibrium point
is stable.
The form.of the stable cycles is of interest. The cycles can

have a very long time with little gene frequency change, fol-
lowed by a relatively short time ofrapid change (Fig. 2). Hence,
cases of apparent directional selection may result from cyclic
behavior, with a period far too long to observe in real
populations.
What is needed now is a study of cycling in more complex

models with more loci and more alleles to help assess the
likelihood and importance of cycling in genetic models. In the
two-locus case studied here, the phenomenon is rare in the
sense that large epistasis is required (Eqs. 1 and 2). However,
all fitness matrices sufficiently close to a matrix that leads to
cycling will also lead to cycling.
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