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Supplementary Figure 1: Root Anatomy based extraction of expression 
information 
 

 
 

Supplementary Figure 1: Root Anatomy based extraction of expression 

information. (a) Side view of an Arabidopsis root. The different developmental 

zones are indicated. (b) A detailed view of the tip of the root. (c) A cross-

section of the root. (Figures a-c are adapted from 1) 
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Supplementary Figure 2: Low resolution imaging 

 
Supplementary Figure 2: Low resolution imaging. (a) A low resolution image 

of a complete RootArray. The red channel depicts the staining with propidium 

iodide, and the green channel reflects the autofluorescence of the RootArray. 

(b) Detected wells are marked in cyan, roots are marked in white, and the 

meristem regions are marked in magenta. (c) Blue squares depict the 

locations of high resolution images scheduled to be acquired. 

  



	  

Supplementary Figure 3: Image Variability 

 
Supplementary Figure 3: Image Variability. Three samples of low resolution 

images of three different RootArrays; these images represent the variability in 

image quality and contrast. The right column shows the PI channel of these 

images; the left column shows the same images with the results of our factor 

graph segmentation highlighted in red. 

 

  



	  

Supplementary Figure 4: Factor graph for image segmentation  

 
Supplementary Figure 4: Factor graph for image segmentation. The 

Supplementary Figure hows a model with 3 levels. Each grid represents 

random variables at different levels, the black circles represent functions on 

random variables. Dashed lines mark the relationship between functions and 

the variables they are dependent on. At higher levels, the Supplementary 

Figure hows (in a lighter color) the previous variables that are indirectly 

associated with the center variable. Higher levels incorporate information from 

broader spatial areas. 

  



	  

Supplementary Figure 5: Comparative evaluation of the segmentation 
algorithm 

 
 

Supplementary Figure 5: Comparative evaluation of the segmentation 

algorithm. (a) The original low resolution PI channel image. (b) The result of 



	  

the hierarchical model-based segmentation; the root labeled pixels are in red 

and are superimposed on the original image. (c) The roots per minute 

performance metric. The left panel shows two perfectly labeled roots and the 

subsequent tiling. The right panel shows the results of an imperfect 

segmentation. More than 90% of the rightmost root is missed, and therefore 

only one root is in the numerator. Noise at the tip of the leftmost root results in 

an extraneous tile being acquired. (d) Standard-deviation error bars showing 

the performance increase of the hierarchical model in roots-per-minute 

compared to 15 different segmentation algorithms previously implemented in 

Fiji. The dashed red line shows the mean result of hand-labeling each image 

(i.e. an optimal roots per minute). The optimal roots per minute reflects the 

limits of the microscope in terms of acquisition time and the typical size of the 

roots. 

  



	  

Supplementary Figure 6: Topological tip detection algorithm 

 
Supplementary Figure 6: Topological tip detection algorithm. Illustrative 

example of the topological tip detection algorithm. At each pixel of the 

identified root (in white), a circle (in green) is centered. The entire root image 

is subtracted from the circle, and the pixel is labeled with the number of 

components the circle was sectioned into. The left circle will be cleaved into 2 

components; the right circle remains as 1 component, and therefore the pixel 

is identified as a tip. 

 

  



	  

Supplementary Figure 7: Graphical User Interface for RootArray data 
analysis 

 
Supplementary Figure 7: Graphical User Interface for RootArray data 

analysis. Zonemarker screenshot. The manual zone marking and quality 

control software is implemented as a Fiji plugin. The leftmost picture shows an 

unstraightened maximum projection of a root with the boundary outlined in 

white and the medial axis in cyan. The rightmost image shows the 

computationally straightened root in three views (from left to right): medial 

section, surface, and max projection. The four horizontal lines are zones 

manually marked by the user: the quiescent center (cyan), the start of 

elongation (blue), the start of maturation (red), and a vertical crop location 

(yellow). 

 

  

 
 
 

 
 
 
 
 



	  

Supplementary Figure 8: Step-wise performance evaluation of the 
RootArray pipeline 

 
 

Supplementary Figure 8: Step-wise performance evaluation of the RootArray 

pipeline. The numbers denote the average fraction of successfully recovered 

roots compared to total number of roots in the previous step. 

 

  



	  

Supplementary Figure 9: Effects of growth conditions on growth rate 

 
Supplementary Figure 9: Effects of growth conditions on growth rate (a), cell 

cycle progression (b), meristem size (c) and elongation zone size (d). Data is 

from the first 24h of treatments. 

 

  



	  

Supplementary Figure 10: Heterogeneity Quantification 

 
Supplementary Figure 10: Heterogeneity Quantification. Heterogeneity of 

gene expression between isogenic plants imaged on the same RootArray at 

the same time point. (a) Boxplot of Pearson correlation of expression in all 

tissue types between roots in the same RootArray at the same timepoint. High 

correlation (y-axis) indicates a homogeneous expression pattern, low 

correlation high heterogeneity. (b-k) Examples of low heterogeneity 

expression patterns of roots in the same array at the same time point such as 

WER (b-g) and SCR (h-k), and higher heterogeneity such as WOX5 (l-r) and 

UPB1 (s-u). Insets are magnified portions of the root indicated with boxes in 

the main figure. 

 

  



	  

Supplementary Figure 11: Examples for high heterogeneity of expression 

 



	  

Supplementary Figure 11: Examples for high heterogeneity of expression. 

Examples of high heterogeneity of expression in isogenic plants imaged on 

the same array at the same time point. 

 

  



	  

Supplementary Figure 12: Correlation between RootArray and RootMap 

 

 
Supplementary Figure 12: Correlation between RootArray and RootMap. 

Pearson correlation values between RootArray and RootMap, as well as 

heterogeneity of spatial gene expression profiles. (a) An 18-dimensional 

expression vector for different tissue types and developmental zones was 

extracted from each RootArray image, or from the arithmetic average of all 

RootArray images for a given genotype, and compared to the corresponding 

FAC-sorted microarray gene expression data from the RootMap for the 

respective gene promoter. (b) Pair-wise Spearman rank correlation values for 

root replicate images obtained from the same RootArray under standard 

growth conditions were computed. This identifies outliers within a set of 

images belonging to the same gene promoter, as well as 

heterogeneous/multimodal patterns. 

  



	  

Supplementary Figure 13: Progression of UPB1 expression change 

 
Supplementary Figure 13: Progression of UPB1 expression change. 

Examples of progression of expression change in UPB1 reporter line in 

different growth conditions.  

 

  



	  

Supplementary Figure 14: Crosstalk correction  

 
Supplementary Figure 14: Crosstalk correction. (a) The PI channel for pWOX5 

reporter. The top image shows the meristem, the bottom the mature part of 

the root. (b) The original GFP channel. Notice that there is unexpected signal 

in the epidermis. (c) The GFP channel with cross-talk removed. We see the 

expected signal in the quiescent center but not in the mature epidermis 
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Supplementary Figure 15: Neighborhood relations in the segmentation 
model 

 
Supplementary Figure 15: Neighborhood relations in the segmentation model. 

(Top) Neighborhood function at three different levels. (Bottom) Schema of the 

rotation function for each value of Θ. 

  

 
 
 
 
 



	  

 

Supplementary Tables 
 
Supplementary Table 1: Performance of the registration algorithm 

Tissue Type Zone 
Number of 
Points Correct 

Number of 
Points Incorrect Accuracy 

Columella meristem 90 16 0.85 
Cortex meristem 60 66 0.48 
Endodermis meristem 29 99 0.23 
Epidermis meristem 62 54 0.53 
LRC meristem 61 30 0.67 
Pericycle meristem 14 58 0.19 
Stem Cell 
Niche meristem 97 14 0.87 
Vasculature meristem 72 78 0.48 
Cortex elongation 122 27 0.82 
Endodermis elongation 64 51 0.56 
Epidermis elongation 130 3 0.98 
Pericycle elongation 21 38 0.36 
Vasculature elongation 113 23 0.83 
Cortex mature 218 87 0.71 
Endodermis mature 91 81 0.53 
Epidermis mature 200 27 0.88 
Pericycle mature 28 38 0.42 
Vasculature mature 171 63 0.73 
Mean 

 
1643 853 0.66 

 
Supplementary Table 1: Performance of the registration algorithm. The 
computed tissue types of 50 sample points from 50 random images were 
manually verified in order to evaluate the performance of the registration 
algorithm. Results are reported as the total number of correct points, the total 
number of incorrect points, and the accuracy (total correct divided by total 
points). Results are divided by tissue type and longitudinal zone. 
 
  



	  

Supplementary Table 2: Reporter lines 
AGI Gene Construct Reference 
AT3G48100 A8 pA8::GFP Lee et al. 2006 
AT2G36100 CASP1 pCASP1::GFP Roppolo et al., 2011 
AT3G11550 CASP2 pCASP2::GFP Roppolo et al., 2011 
AT5G06200 CASP4 pCASP4::GFP Roppolo et al., 2011 

AT4G37490   CYCB1;1 
pCYCB1;1::CYCB1;1-
GFP 

Colon-Carmona et al., 
1999 

AT4G21340 E30 pE30::GFP Lee et al. 2006 
AT2G22850 S17 pS17::GFP Lee et al. 2006 
AT5G12870 S18 pS18::GFP Lee et al. 2006 
AT2G18380 S32 pS32::GFP Lee et al. 2006 
AT3G25710 S4 pS4::GFP Lee et al. 2006 
AT3G54220 SCR pSCR::GFP Levesque et al. 2006 
AT2G47270 UPB1 pUPB1::GFP Tsukagoshi et al. 2010 
AT5G14750 WER pWER::GFP Lee et al., 1999 
AT3G11260 WOX5 pWOX5::GFP Xu et al., 2006 

 
Supplementary Table 2: Reporter lines. Reporter lines used in this study. 
 
  



	  

Supplementary Table 3: Performance metrics 

Measure Process Type 
Average 
time [h] 

Average 
recovery 
rate 

Roots in RootArray Chamber Physical NA 54% 
Low Resolution Scanning Microscopy 0.12* NA 
Root Detection Computational 0.23* 65% 
High Resolution Imaging per Timepoint Microscopy 6.75* NA 
Well mapping and Quality Control 
Timepoint Expert labeling 0.27** 42% 
Mapping of Tissue Pixel Intensities Computational 0.081*** 45% 

 
Supplementary Table 3: Performance metrics. Average time needed for each 
step of the pipeline and root recovery rate (i.e. root data of sufficient quality 
recovered from the previous step).  * averages for presented data set; ** 
maximal effort if 64 well mapping and QC decisions would be performed; *** 
average running time per image on random sample of 10 images 
 
  



	  

Supplementary Table 4: Dataset overview 
Genotype MS pH4.6 -S -Fe Total 
pA8::GFP 18 12 12 2 44 
pCASP 33* 40# 49 18 140 
pCYCB1;1 92 47 40 35 214 
pE30::GFP 44 24 8 3 79 
pS17::GFP 14 0 24 15 53 
pS18::GFP 11 4 7 6 28 
pS32::GFP 48 45 17 5 115 
pS4::GFP 41 34 29 8 112 
pSCR::GFP 40 37 26 43 146 
pUPB1::GFP 78 43 32 10 163 
pWER::GFP 41 31 36 30 138 
pWOX5::GFP 42 27 86 6 161 
Total 502 344 366 181 1393 
# RootArrays 21 20 17 15 73 

 
Supplementary Table 4: Dataset overview. Number of whole root images and 
RootArrays that were contained in the final dataset for analysis. (* 18 
pCASP1::GFP and 15 pCASP2::GFP; # 33 pCASP1::GFP, 7 pCASP2::GFP) 
 
  



	  

Supplementary Table 5: Test for trait change 
 
Trait -S -Fe pH 4.6 
Growth Rate 2.60E-07 1.34E-07 0.0723 
Cell Cycle Progression 0.4631 0.693 0.2577 
Meristem Size 6.64E-13 2.20E-16 0.01622 
Elongation Zone Size 9.19E-12 2.14E-08 0.1374 

 
Supplementary Table 5: Test for trait change. Statistical test results (Wilcoxon 
rank sum test) for differences in growth rates, cell division rates and zone 
sizes. 
 
  



	  

Supplementary Table 7: Imaging dates and treatments 
 
EXP_ID Treatment Imaging start (date, time) 
WB_RA168 standard MS 2009-11-06 18:18:44 EST-0500 
WB_RA178 standard MS 2009-11-13 16:53:19 EST-0500 
WB_RA204 standard pH4.6 2009-12-13 21:16:01 EST-0500 
WB_RA230 standard MS 2010-02-19 12:53:37 EST-0500 
WB_RA232 standard pH4.6 2010-02-22 09:59:42 EST-0500 
WB_RA243 standard MS 2010-03-13 19:25:05 EST-0500 
WB_RA246 standard pH4.6 2010-03-20 11:40:29 EDT-0400 
WB_RA248 standard pH4.6 2010-03-22 09:37:01 EDT-0400 
WB_RA250 standard MS 2010-04-02 11:32:54 EDT-0400 
WB_RA255 standard pH4.6 2010-04-09 19:33:35 EDT-0400 
WB_RA266 standard MS 2010-04-20 09:53:16 EDT-0400 
WB_RA268 standard MS 2010-04-24 18:21:55 EDT-0400 
WB_RA274 standard pH4.6 2010-04-30 15:16:54 EDT-0400 
WB_RA278 standard pH4.6 2010-05-04 09:48:51 EDT-0400 
WB_RA285 standard MS 2010-05-17 09:55:38 EDT-0400 
WB_RA286 standard pH4.6 2010-05-18 17:31:09 EDT-0400 
WB_RA289 standard MS 2010-05-21 17:16:11 EDT-0400 
WB_RA294 standard pH4.6 2010-05-28 15:07:29 EDT-0400 
WB_RA299 standard pH4.6 2010-06-01 18:14:24 EDT-0400 
WB_RA310 standard MS 2010-06-14 11:12:19 EDT-0400 
WB_RA345 standard -S 2010-07-27 10:35:57 EDT-0400 
WB_RA350 standard -Fe 2010-07-30 16:26:40 EDT-0400 
WB_RA351 standard -Fe 2010-08-02 10:29:05 EDT-0400 
WB_RA355 standard -Fe 2010-08-04 10:35:20 EDT-0400 
WB_RA356 standard -Fe 2010-08-06 11:10:42 EDT-0400 
WB_RA359 standard -Fe 2010-08-08 18:45:03 EDT-0400 
WB_RA360 standard -Fe 2010-08-10 18:54:44 EDT-0400 
WB_RA364 standard -S 2010-08-14 14:38:57 EDT-0400 
WB_RA366 standard -S 2010-08-16 12:04:24 EDT-0400 
WB_RA367 standard -S 2010-08-18 15:15:34 EDT-0400 
WB_RA370 standard -S 2010-08-20 10:02:44 EDT-0400 
WB_RA372 standard -S 2010-08-24 16:14:48 EDT-0400 
WB_RA373 standard -S 2010-08-22 18:33:35 EDT-0400 
WB_RA379 standard -S 2010-08-29 14:32:11 EDT-0400 
WB_RA387 standard MS 2010-09-07 18:57:53 EDT-0400 
WB_RA389 standard MS 2010-09-09 18:14:22 EDT-0400 
WB_RA391 standard MS 2010-09-11 13:42:26 EDT-0400 
WB_RA395 standard MS 2010-09-15 14:36:54 EDT-0400 
WB_RA396 standard MS 2010-09-17 11:51:26 EDT-0400 
WB_RA397 standard MS 2010-09-18 20:32:43 EDT-0400 
WB_RA398 standard MS 2010-09-20 15:49:25 EDT-0400 
WB_RA406 standard MS 2010-09-27 11:11:29 EDT-0400 
WB_RA407 standard MS 2010-09-28 16:23:37 EDT-0400 



	  

WB_RA410 standard pH4.6 2010-10-01 13:52:31 EDT-0400 
WB_RA412 standard pH4.6 2010-10-04 13:21:12 EDT-0400 
WB_RA414 standard pH4.6 2010-10-05 14:25:35 EDT-0400 
WB_RA415 standard pH4.6 2010-10-07 12:25:40 EDT-0400 
WB_RA418 standard pH4.6 2010-10-11 09:26:00 EDT-0400 
WB_RA419 standard pH4.6 2010-10-12 09:00:24 EDT-0400 
WB_RA420 standard pH4.6 2010-10-13 10:44:16 EDT-0400 
WB_RA421 standard pH4.6 2010-10-14 18:23:13 EDT-0400 
WB_RA425 standard pH4.6 2010-10-18 10:28:22 EDT-0400 
WB_RA426 standard -S 2010-10-19 10:29:08 EDT-0400 
WB_RA428 standard -S 2010-10-21 09:58:38 EDT-0400 
WB_RA429 standard -S 2010-10-22 13:20:53 EDT-0400 
WB_RA430 standard -S 2010-10-23 15:59:49 EDT-0400 
WB_RA434 standard -S 2010-10-28 09:40:00 EDT-0400 
WB_RA436 standard -S 2010-10-29 18:17:53 EDT-0400 
WB_RA441 standard -S 2010-11-03 16:28:17 EDT-0400 
WB_RA446 standard -Fe 2010-11-07 20:05:06 EST-0500 
WB_RA454 standard -Fe 2010-11-16 10:46:40 EST-0500 
WB_RA457 standard -S 2010-11-19 13:47:41 EST-0500 
WB_RA461 standard -Fe 2010-11-23 10:40:03 EST-0500 

 
Supplementary Table 7: Imaging dates and treatments. 
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Supplementary Note 1. Hierarchical Model for Root Detection. 
 
We defined a hierarchical multi-level model (see Supplementary Fig. 4) over 
the W !H image I(i, j), 0 ! i !W, 0 ! j ! H as a set of random variables 

{Xk;i, j : 0 ! k ! n, 0 ! i !W, 0 ! j ! H} , where n  specifies the number of levels in 

the model, k  is the current level of the random variable, and (i, j)  is the 

corresponding pixel location. The observed variables 
X0 = {X0;i, j = I(i, j) : 0 ! i <W, 0 ! j < H}make up the lowest level of the model 

and correspond to the pixel intensities. The remaining variables 
Xk;i, j = {Xk;i, j = xk;i, j},k > 0,0 ! xk;i, j < Lk  are the latent variables where Xn  

represents the final label (e.g. root or background) for each pixel. The range of 
values (defined by Lk ) for a random variable is dependent on its level. Our 

goal was to compute the maximum a posteriori (MAP) estimate of the latent 

variables, 

argmax
Xk!0

P(X0 |Xk!0 )P(Xk!0 )
P(X0 )

 

 

Intuitively, we wanted to capture both the pixel-intensity-based detail of the 

image at the lowest level , while specifying labeling dependencies at 
increasingly larger areas in higher levels. For a random variable Xk;i, j , we 

therefore defined its neighborhood based on its corresponding random 

variables at the previous level as 

Gk;i, j = X
k!1;i!2k , j

,X
k!1;i, j+2k

,X
k!1;i+2k , j

,X
k!1;i, j!2k

,Xk!1;i, j  

 
Note, at k =1 , the neighborhood function is similar to the Ising Model 1 and the 

variable X1;i, j is related to the observed pixels as shown in Supplementary Fig. 

4. As k  increases, the variables are connected to the lower level variables at 

farther distances, and are influenced by the larger regions of the image. In 

each level, the neighborhood consists of five elements. 

 
The lowest latent level, k =1 , aims to capture the spatially significant 
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correlations (or “texture”) of the image. We modeled this relationship as a 
multivariate normal over the neighborhood G1;i, j . The probability that a 

random variable at this level has a value l, 0 ! l < L1  is 

P(X1;i, j = l |G1;.i, j ) = f1;i, j (l,G1;i, j ) = N(G1;i, j;µl,!l )  

 

However, this relationship is dependent on the rotation of the object. Observer 
that G1;i, j  is comprised of five elements: the observed value at (i, j) , the pixel 

above, the pixel below, and the two pixels on either side. For a given G1;i, j we 

defined the ordered tuple, 

g = g0,g1,g2,g3 = X0;i!1, j,X0;i, j+1,X0;i+1, j,X0;i, j!1  

 

We modeled the potential rotations of this neighborhood by permuting the 

outer elements around the center (see Supplementary Fig. 15). We defined 
the rotation function r(!,g), 0 !! ! 3as 

r(!,g) = g0+!mod4,…,g3+!mod4  

 

This let us define a relationship over all possible permutation. Given a 

parameterized multivariate normal, we defined the highest scoring rotation, !̂ , 

as 

!̂ = argmax
!

N(X1;i, j, r(!,g);µ,!)  

 
The probability that a random variable at level k =1  has a value l  given its 

neighborhood is 

 f1;i, j (l,G1;i, j ) = N(X1;i, j, r(!̂,g);µl,!l ) /K  Eq 1 

where K = N(x, r(!̂
x,g! ,g);µl,"l ) is a normalizing constant. 

 

What remained was to define the coarser segmentation label relationships at 
the higher level ( k >1), which we modeled with a multinomial distribution. We 

defined the counts as 
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xm = {g : g!Gk;i, j "g#m} , 0 $m < Lk#1  

 

Our relationship uses these counts, and was defined as 
 P(Xk;i, j = l |Gk;i, j ) = fk;i, j (l,Gk;i, j ) =Mult(x0,…, xLk!1;5; p0,…, pLK!1 )  Eq 2 

where 

Mult(x0,…, xLK!1;5; p0,…, pLK!1 ) =
5!

x0 !…xLK!1 !
p0
x0…pLK!1

xLK!1  

is the multinomial distribution. Note that the probabilities p0…pLK!1 were 

defined for each value of l ! LK . 

 

Finally, we defined the joint probability of the model as 

 h(x0,xk!0 ) = fk;i, j (xk;i, j,Gk;i, j )
i, j
"

k=1

n+1

"  Eq 3 

where fn+1;i, j  was the prior probability for a given final label, i.e. the object 

classes such as root and background. In summary, this model is a 

generalization of typical Markov Random Field models for segmentation, in 

which the observable pixel intensities are dependent on a single layer of 

hidden labels 20, to multiple intermediate layers that represent spatial 

dependencies at different resolutions. Furthermore, we included rotation 

invariance in the model to account for the varying directions of root growth. 

 

Computing the Root Model Marginal Probability. To determine what the 
final label should be for a specific xn;i, j  we need to marginalize the joint 

distribution over all values of the other random variables. With ~ {Xn;i, j}  

denoting all possible value assignments over variables other than xn;i, j  in our 

summation, we defined the marginal probability as 

hxn;i, j (x0,xk!0 ) = fk;i, j (xk;i, j,Gk;i, j )
i, j
"

k=1

n+1

"
~{Xn;i, j }
#  

 

The summation notation does not immediately indicate the exponential 
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number of terms in the summation, namely Lk
WH

k=1

n
! . We reduced the 

complexity of this calculation by factoring out independent terms, and sped up 

the computation by stochastic approximation methods. 

 

The factor graph is a graphical model for decomposable problems. It 

subsumes both directed and undirected graphical models on joint 

distributions, such as Bayesian networks and Markov random fields, within on 

formalism 2. Given a function 

h(x1,…, xn ) = f j (Xj )
j!J
"  

where J is a discrete index set, Xj  is a subset of {x1,…, xn} , and f j (Xj )  is a 

function only depending on Xj . A factor graph is a bipartite graph with 

variable nodes, {x1,…, xn} , function nodes f j (Xj ) , and edges between 

functions and the variables they depend on. There are several algorithms 

defined over factor graphs for computing the following marginal function 

hi (xi ) = h(x1,…, xn )
~{Xi}
!  

where ~ {xi}denotes the summation over all the values of all variables with a 

fixed value for xi . 

 

We defined the marginal probability of our hierarchical model as a factor 

graph problem. For a factor graph with cycles, loopy belief propagation (a 

message-passing algorithm) can be used to approximate the marginal 

function. In the straightforward application of belief propagation, the 

messages from the multinomial distribution functions (Eq 2) to the higher level 

latent variables require the calculation of a costly sum. We replaced this sum 

with a particle method approximation, in which an importance sampler over 

the incoming edges is used 3. 
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Supplementary Note 2. Computing the Medial Section. 
Foreground Segmentation. The foreground root was separated from the 

background by applying edge detection and active contour methods to the 

propidium iodide dye outlining the cells. For each slice S in a confocal image z 

stack, we took all points with a gradient magnitude !S  larger than an 

adjustable threshold as interior points of the root. For the particular images in 

our data set, we empirically determined reasonable thresholds between 1 and 

2 percent of the maximum image contrast. The interior points were locally 

connected through morphological closing of the binary result. Various edge 

detection and linking methods could be substituted to meet different needs of 

speed and sensitivity. We took the union of all points found by edge detection 

and points separated from the image boundary by edge detection to be 

interior points of the root and therefore part of the foreground. Because we 

wished to eliminate root hairs, we performed a morphological opening, which 

has the additional benefit of eliminating speckle noise from the background. 

 

As each of the z-planes of the image was binarized to represent root and non-

root pixels, the individual planes were stacked and bit-packed into a 3D binary 

image. We ran an active contour on a projection of this image to determine 

the foreground boundary in the x and y directions. We minimized the energy 

functional 

 E = 1
2
(a !x(s) 2 +! !!x(s) 2 +Eext (x(s))ds0

1
!  Eq 1 

using a gradient descent method based on Gradient Vector Flow (GVF) 
1(Matlab code available at http://www.iacl.ece.jhu.edu/static/gvf/). We used a 

modified version of GVF and Gradient Vector Convolution (GVC) 2 so that we 

could handle large image sizes. The GVC is defined by a convolution of the 

image gradient with a two parameter kernel, K = (x2 + y2 + h)!n/2 , where the 

parameters n and h control the capture range and the spatial smoothing of the 

external force. 

 

The choice of the active contour parameters α and β in Equation 1, along with 
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the gradient descent parameters viscosity and external force, determines a 

particular smoothness to the contour. The appropriate smoothness of the root 

boundary was different in the meristem than in the differentiated part of the 

root, and active contours with different parameters were applied separately to 

these two regions. All of the parameters are dimensionless and it is their 

relative values that are important. We held α and β constant at 0.1, the 

viscosity constant at 1.0, and varied only the external image force in the 

gradient descent step. In the differentiated part of the root we used an 

external force weight of 0.1, and in the meristem we used values between 1.0 

and 1.5. The relative sizes of the parameters created a higher curvature 

boundary in the meristem, where we expected to see a high curvature at the 

root tip. 

 

Computing a 3D Medial Axis. Locating a representative longitudinal medial 

surface was done in two parts. First a 2D medial axis for the foreground 

shape from the previous step was calculated, and then the depth of the 

medial axis was determined by modeling the root as a curved cylinder. The 

2D medial axis is similar to a skeletonization of the foreground shape 3, but we 

wanted to: i) obtain a continuous curve rather than an image, ii) eliminate 

spurious branches, and iii) extend the medial axis to the high curvature tip of 

the root. These features were accomplished by the shape axis (SA) 

transformation with an appropriate branching cost 4. The SA transformation 

required a choice of similarity criteria; we found that the differentiated parts of 

the root were best described by a parallelism criterion and the meristem was 

best described by a co-circularity criterion.  

 

The smoothness of the boundary guaranteed by the active contour allowed 

the use of a stricter version of the SA transform for the parallel portion of the 

root that naturally separates it from the co-circular part. The SA transform 

paired every point on the boundary with a parallel point on the boundary (or 

with itself) by globally minimizing the energy function ! i !! ji~ j" , where !  is 

the normalized tangent vector to the boundary and i ~ j  indicates the ith and jth 
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points are paired. Our approach avoided the challenge of a global 

minimization by first pairing only those points for which the energy function is 

zero. This can be accomplished with a complexity on the order of a binary 

search on the boundary and effectively reduces the problem to matching 

boundary points over several smaller segments of the boundary. Then the SA 

transform can be applied on the remaining boundary fragments requiring the 

energy function to be minimized on each fragment rather than globally. We 

have found that filling the gaps with appropriately smooth functions instead 

worked well in practice. We chose Bezier splines to join the matched 

boundary points. The splines have 4 control points, the two endpoints of the 

spline that are halfway between the paired boundary points and two additional 

points displaced from the endpoints in a direction tangent to the boundary at 

the matched point at a distance one third of the Euclidean distance between 

the endpoints. 

  
In addition to being more computationally efficient than the full transform, the 

strict approach guaranteed a single axis with two endpoints and no branching. 

This axis did not extend into the meristem of the root and ended at the 

boundary between the parallel and co-circular parts of the root. The axis was 

extended to the tip of the root using the following co-circularity criterion  

 
(xi ! x j )(! i !! j )
xi ! x j ! i !! ji~ j

"  Eq 2 

where x is a point on the boundary and τ is the tangent vector. Tangents were 

computed in opposite directions, vertical bars indicate Euclidean norms, and i 

~ j indicates the ith and jth points are paired. The point at the tip of the root was 

the self matched point when this criterion was minimized. 

 

Once the location of the medial axis in the x and y directions was computed, 

the depth was determined by considering the root as a curved cylinder in 3D. 

At each point along the two-dimensional medial axis, we extended a 

perpendicular line to the edge of the foreground root found in the first step. 

This provided the diameter of the cylinder at that location. The location of the 
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top surface of the root was taken from the 3D binary image computed earlier. 

The depth of the medial axis was then simply half the diameter deeper than 

the top surface. In order to overcome the low resolution in the z-direction, the 

depth was smoothed by a Gaussian convolution. The width of the Gaussian 

was chosen such that its frequency counterpart had a width of 2/3rds the 

Nyquist frequency of the medial axis resolution. Because the medial axis 

depth was not periodic, we reflected the medial axis about its endpoints. We 

performed the convolution for a single reflection about the endpoint 

 R(s) = {D(0)!D(!s)    for s<0
D(s)                    for s>0  Eq 3 

where R is the reflection, D is the original depth and s is the distance along 

the axis and ranges from zero to the length of the axis. For a double reflection 

about both the endpoint and the endpoint depth: 

 R(s) = {D(0)!D(!s)    for s<0
D(s)                    for s>0  Eq 4 

We chose the smoothed version with minimal square difference from the 

original. Combining the depth information with the 2D information resulted in a 

medial axis curve for the root in the 3D image. 

 
Reconstructing a Medial Longitudinal Section. A representative medial 

longitudinal section is a surface that intersects the medial axis and extends 

perpendicular to it (Figure 3). There are many such sections and we chose 

one such that the depth of the surface perpendicular to the medial axis was 

constant. A set of points on the surface with the same spacing as the x-y 

resolution of the original image was computed, and the quasi 3D image stack 

was interpolated at these points to create an image of the medial longitudinal 

section of the root. A straightened image of the medial section was computed 

with x-y resolution in the same way as the original image. The pixel value at a 

distance s from the tip and r from the medial axis of the straightened image 

was computed by interpolation of the original image at a distance s from the 

tip along the medial axis and a distance r from the medial axis in a direction 

perpendicular to the medial axis in the plane of the medial section surface. 

The straightened image was registered to an atlas based on the most 

prominent geometric features of the root, the tip and the longitudinal distance 
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where the root width becomes nearly constant. 
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