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1 Model Selection

We generated a series of models with different assumptions about the form of the internal and external
transmission coefficients. The sections below describes the form of each model. In all cases we used non-
informative prior distributions. Table [I| shows the Deviance Information Criteria (DIC) for each model
described below.

All models were fit in JAGS 3.0 [I]. We ran three chains for each model and assessed convergence by
monitoring R with a threshold of 1.01 in addition to visual confirmation of the trace plots of all three chains.
We ran models until convergence (ranging from 100,000 - 350,000 iterations), saved every 20-50th iteration
depending on the number of iterations.

The following model forms the basis of each model shown below:
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where:

I; +: Number of observed incident cases in area 7 at time ¢

S; ¢: Number of susceptible individuals in area i at time ¢

N;: Population size in area ¢

[;: Internal transmission coefficient for area 4

o ;¢ External transmission coeflicient for a new case in area ¢ being infected as a result of a case in area j
¢: Fraction of infectious individuals who are symptomatic and present to cholera treatment facilities within
the city

After each step in the model we update the number of susceptibles with the following rule:
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Si,t+1(¢) = Si,t(¢) -

1.0.1 Model 1.1

In this model we only allowed for two unique transmission parameters; one for internal transmission (3) and
one for external transmission (i.e. between areas, ). We assigned non-informative normal priors centered

at zero (N(0, g957)) for natural logarithm of both of these parameters.



1.0.2 Model 1.2

To relax Model 1.1, we allowed for each location to have an independent internal transmission coefficient (5;)
and only allowed for one external transmission coefficient shared by all locations («). The natural logarithm

of all transmission coefficients here were assigned independent N (0, ﬁ) priors.

1.0.3 Model 1.3

In this model we allow for each location have its own internal transmission coefficient (5;), and have symmetric
external transmission coefficients (i.e. a; ; = ;). We put separate diffuse normal hyper-priors on the mean
and variance of external and internal coeflicients.

1.0.4 Model 1.4 (Model Used in Paper)

Next we relaxed the symmetry assumption and allowed each location to have its own unique internal and
external transmission coefficients. The coefficients are linked through independent normal hyperpriors; one
for internal and another for external transmission coefficients. This is the model presented in the paper:
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1.0.5 Models with Seasonality

Since cholera transmission tends to vary seasonally [2] [3] 4], we used data from all epidemics in SAB since
1997 (with data from the epidemic in 2001-2002 missing) to estimate the seasonal force of infection. We
used a generalized additive model with only day of year as an independent variable. This model was fit in
R using the “gam” package [5] with the degree of smoothness determined by generalized cross validation.
We centered the seasonal function at 0 and rescaled it lie between -1 and +1 as shown in Figure[I] Seasonal
forcing was incorporated into the model as follows:
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Figure 1: Scaled and centered seasonal forcing function fit using a generalized additive model

Table 1: Comparison of models with and without seasonality (s)

Model 1.1 Model 1.2 Model 1.3 Model 1.4 Model 1.1s Model 1.2s Model 1.3s Model 1.4s

DIC 3514.10 3118.90 2997.20 2957.30 3514.50 3133.10 2998.00 2956.90
Marginal Mean Posterior Internal Transmission Parameters

log(8;) -0.04 -0.29 -1.20 -2.92 -0.04 -0.28 -1.18 -3.03
log(B2) -0.04 -0.33 -2.91 -4.38 -0.04 -0.32 -2.92 -4.45
log(B3) -0.04 -0.02 -1.02 -1.21 -0.04 -0.02 -1.02 -1.28
log(B4) -0.04 -0.42 -0.27 -0.27 -0.04 -0.40 -0.28 -0.36
log(B5) -0.04 -27.50 -3.27 -4.61 -0.04 -3.10 -3.27 -4.71
log(Bs) -0.04 -0.63 -2.08 -3.88 -0.04 -0.60 -2.06 -4.02
log(B7) -0.04 -27.95 -3.11 -4.51 -0.04 -3.11 -3.10 -4.61
log(Bs) -0.04 0.34 0.28 0.16 -0.04 0.34 0.27 0.04
log(Be) -0.04 -0.47 -0.59 -0.80 -0.04 -0.46 -0.59 -0.92
log(810) -0.04 -1.16 -1.27 -1.32 -0.04 -1.12 -1.27 -1.43
log(811) -0.04 -0.81 -0.77 -0.81 -0.04 -0.78 -0.78 -0.93
log(B12) -0.04 -0.50 -1.28 -2.66 -0.04 -0.48 -1.28 -2.73
log(B13) -0.04 -0.06 -1.09 -0.90 -0.04 -0.06 -1.08 -1.02
log(f14) -0.04 -0.09 -0.41 -0.94 -0.04 -0.09 -0.42 -1.05

Note: The difference in DIC between Models 1.4 and 1.4s is not practically significant therefore we chose to
use the simpler of the two models, 1.4.



1.1 Epidemic Simulations and Prediction Intervals

Each epidemic simulation was performed by drawing a new set of parameters from the joint posterior
distribution then stepping through time and drawing new cases from a Poisson distribution as specified in

[1.0-4] Ninety five percent prediction intervals were calculated by taking the 2.5 and 97.5 percentiles at each
time step.

1.2 Model Fit

Figure [2] illustrates the posterior mean transmission coefficients and their standard deviation from the final
model from 5,000 simulations.
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Figure 2: Posterior means for log(f;) (diagnonal) and log(c;;)) (off-diagonal) for each location from Model
1.4. For example ay g, read from column 2 row 8, can be interpreted as the tranmission coefficient for cases
arising in area 8 from prevalent cases in area 2.

We assessed model fit by looking at the mean squared error and coverage of 95% prediction intervals from
n-step ahead predictions. We ran full simulations starting from the initial conditions of the 2008 epidemic
and also looked at the fit from starting later points in time (Figure[6). Figures [3|and [4] show one and three
step-ahead predictions along with Figure [f] which illustrates simulations of the full epidemic.



1-Step Ahead Predictions for All Areas in SAB
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Figure 3: 1-step ahead predictions for all areas and 95% prediction intervals. Data from the 2008 epidemic
shown in black

3-Step Ahead Predictions for All Areas in SAB
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Figure 4: 3 step ahead predictions for all areas



1-Step Ahead Predictions 3-Step Ahead Predictions: All SAB
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Figure 5: SAB-wide 1 (left) and 3 (right) Step Ahead Predictions. MSEs are 3114.8 and 5376.9, respectively.
95% Credible Interval coverage equals 81.3% and 76.7%, respectively. 95% CI coverage for 10 step ahead
predictions shown in paper is 82.3% with an MSE of 10781.3.
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Figure 6: Full prediction for all areas starting from observed cases at different starting times (TO represents
first epidemic day of simulation). 10,000 simulations shown in orange with observed data shown as triangles.

1.3 Transmission Dynamics

We determined the sanitary area responsible for each new case at each time step, with the new cases in area
i caused by area j at time ¢ 4 1 defined by:

—zifvé‘” Biliy  ifi=j
%Oz]’,ifjﬂ: if 4 7& j

We produced summaries of this process both in terms of total cases contributed from one area to another
and total cases normalized by epidemic size in each area as seen in Figure [7]
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Figure 7: Mean cases attributed to different areas over the entire simulated epidemic. The right panel shows
the proportion of each area’s epidemic (rows) attributed to each area. The left panel shows the number of
in each area attributed to others
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