Supplementary Information

Endocannabinoid-Go α signalling inhibits axon regeneration by antagonizing the Gq α -PKC-JNK cascade in *C. elegans*

Strahil Iv. Pastuhov¹, Kota Fujiki¹, Paola Nix², Shuka Kanao¹, Michael Bastiani², Kunihiro Matsumoto^{1,3} and Naoki Hisamoto^{1,3}

¹Department of Molecular Biology, Graduate school of Science, Nagoya University, Chikusaku, Nagoya 464-8602, Japan ²Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA

³To whom correspondence should be addressed:

Kunihiro Matsumoto, Naoki Hisamoto Department of Molecular Biology, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. Fax: 81-52-789-2589 or 3001 E-mail address: g44177a@nucc.cc.nagoya-u.ac.jp

Supplementary Figure S1. Comparison between *C. elegans* **FAAH-1 and human FAAH1.** The putative transmembrane and amidase domains are boxed. Identical and similar residues are highlighted with black and gray shading, respectively. Black triangles show the conserved residues required for amidase catalytic activity.

Supplementary Figure S2. *faah-1(tm5011)* is a null allele.

(a) Comparison of the structure of the *faah-1* gene in wild type and *faah-1(tm5011)* mutants. Exons and introns are represented by grey boxes and black lines, respectively. The dotted line corresponds to the region deleted in *tm5011*.

(b) Comparison of the sequence of the transcribed *faah-1* gene in wild-type and *faah-1(tm5011)* mutants. The *tm5011* deletion causes splicing of exon 3 right after exon 1 which results in a frame shift (bold) and a premature stop codon (*). Small letters indicate nucleotides and

capital letters indicate the corresponding amino acids.

Supplementary Figure S3. Expression pattern of fluorescent protein under the control of the *faah-1* promoter.

Fluorescent images of animals carrying *Pfaah-1::gfp* transgene are shown. Expression of the transgene is seen mainly in the pharynx (**a**), the posterior intestine (**b**) and the anal depressor muscles (**c**). Scale bar: 50 μ m.

Supplementary Table S1. Raw data for axon regeneration.

Strain	Genotype	Treatment	Age	No. of animals	No. of axons	No. of regeneration (% of total)	P value	compared with
KU501	juls76	EtOH	YA	72	99	63 (64%)	-	-
KU501	juls76	EtOH	YA+48h	53	60	34 (57%)	0.406	KU501
KU501	juls76	EtOH	YA+72h	21	23	14 (61%)	0.814	KU501
KU501	juls76	AEA	YA	50	78	22 (28%)	<0.001	KU501
KU501	juls76	EPEA	YA	69	89	41 (46%)	0.019	KU501
KU501	juls76	EtOH	L4	39	52	34 (65%)	0.86	KU501
KU501	juls76	AEA	L4	42	61	35 (57%)	0.441	KU501, L4
KU451	juls76; faah-1	EtOH	YA	93	152	59 (39%)	<0.001	KU501
KU451	juls76; faah-1	EtOH	YA+48h	45	45	14 (31%)	0.384	KU451
KU451	juls76; faah-1	EtOH	YA+72h	34	35	15 (43%)	0.703	KU451
KU451	juls76; faah-1	EtOH	L4	33	48	29 (60%)	0.012	KU451
KU452	juls76; faah-1; Ex[Pmyo-2::faah-1]	EtOH	YA	34	36	21 (58%)	0.04	KU451
KU453	juls76; faah-1; Ex[Punc-25::faah-1]	EtOH	YA	54	63	35 (56%)	0.034	KU451
KU454	juls76: goa-1 (lf)	EtOH	YA	37	53	32 (60%)	0.727	KU501
KU454	iuls76: aoa-1 (lf)	AEA	YA	32	52	31 (60%)	1	KU454
KU455	<i>juls76: goa-1</i> Q205L (gf)	EtOH	YA	46	54	17 (31%)	<0.001	KU501
KU455	<i>iuls76: aoa-1</i> Q205L (gf)	AEA	YA	41	52	19 (37%)	0.683	KU455
KU456	iuls76: eal-30 (lf)	FtOH	YA	79	106	39 (37%)	< 0.001	KU501
KU456	iuls76: eal-30 (lf)	AFA	YA	48	62	23 (37%)	1	KU456
KU456	juls76: eal-30 (lf)	FtOH	14	42	54	35 (65%)	0.001	KU456
KU457	juls76: eal-30 (af)	EtOH	YA	45	50	30 (60%)	0 721	KU501
KU457	juls76; egl-30 (gf)	AFA	YA	39	46	26 (57%)	0.836	KU457
KU458	juls76; egl-30 (lf): Ex[Punc-25::eal-30]	FtOH	YA	52	80	56 (70%)	<0.000	KU456
KU 1458	iuls76: eal-30 (lf): Ex[Punc-25::eal-30]		VΔ	31	36	13 (36%)	0.001	KU458
KU 1450	iuls76; egi-30 (lf); MI K-1 OF	FtOH	VΔ	76	98	51 (52%)	0.001	KU456
KU1460	iuls76; egi-8	EtOH	VΔ	62	81	26 (32%)	0.00∓ ~0.001	KU501
KU1/61	juls76; tp2-1	EtOH		65	125	52 (12%)	0.001	KU501
KU1461	juls76; tp2-1	EtOH		37	125	27 (61%)	0.001	KUM61
KU401	$ju_1 s 7 6; v_1 s - 1$	EtOH	L 4 ∨∧	45	75	10 (25%)	0.004 ∠0.001	KU501
KU402	$ju_1 < 76; ml_{r-1}$			40	73	19 (25 %) 25 (35%)	0.211	KU1462
KU402	juis 70, min - 1			40 22	50	25 (35%)	0.211	
KU402	juis 70, 1111 - 1			50	50	15 (30%)	0.002	
KU403	juls 76; mlk 1; Ey[Pupe 25; mlk 1]			20	40	20 (29 %)	-0.003	
	juis70, 11116-1, EX[FUIIC-2511116-1]			39 00	40	0(210)		
	JUIS70, IIIIK-1, EX[PUIIC-25IIIK-1]			23	29 51	9(31%)	0.01	
KU405	JUIS76; MIK-1; EX[PUIIC-25::MIK-1 S355A]	EIOH	YA	41	51	21 (41%)	0.045	KU464
KU400	JUIS76; MIK-1; EX[PUNC-25::MIK-1 S355E]	EIUH	YA	47	55	33 (60%)	0.841	KU464
KU466	JUIS76; MIK-1; EX[PUNC-25::MIK-1 S355E]	AEA	YA	50	52	31 (60%)	1	KU466
KU467	<i>juls76; mik-1; egi-30</i> (gf)	EtOH	YA	69	73	27 (37%)	0.017	KU457
KU468	juls/6; svh-2	EtOH	YA	38	55	12 (22%)	<0.001	KU501
KU468	juls/6; svh-2	AEA	YA	36	51	12 (24%)	1	KU468
KU469	juls73; shc-1	EtOH	YA	47	55	18 (33%)	<0.001	KU501
KU470	juls76; tpa-1; Ex[Punc-25::mlk-1 S355A]	EtOH	YA	37	45	16 (36%)	0.586	KU461
KU471	juls76; tpa-1; Ex[Punc-25::mlk-1 S355E]	EtOH	YA	39	47	30 (64%)	0.011	KU461
KU472	juls76; mlk-1; tpa-1	EtOH	YA	54	57	14 (25%)	1	KU462
KU473	juls76; egl-30 (lf); svh-2	EtOH	YA	50	50	15 (30%)	0.377	KU468
KU474	juls76; tpa-1; svh-2	EtOH	YA	56	57	16 (28%)	0.516	KU468

Young Adults (YA) or fourth larval stage (L4) animals were operated on, treated with ethanol (EtOH), anandamide (AEA) or EPEA for 6 hours and then were assayed for axon regeneration 24, 48 (YA+48) or 72 (YA+72) hours after the operation.

P values are two-tailed and are calculated against ethanol-treated young adult (or L4) animals of the indicated strains, using Fisher's exact test.

Supplementary Table S2. Strains used in this study.

strain	genotype
KU501	juls76 II
KU451	juls76 II; faah-1(tm5011) IV
KU452	juls76 II; faah-1(tm5011) IV; Ex[Pmyo-2::faah-1]
KU453	juls76 II; faah-1(tm5011) IV; Ex[Punc-25::faah-1]
KU454	juls76 II; goa-1(n1134) I
KU455	juls76 II; dpy-20(e1362) IV; ln[goa-1 Q205L + dpy-20]
KU456	<i>juls76</i> II; <i>egl-30(ad805)</i> I
KU457	juls76 II; egl-30(tg26) I
KU458	juls76 II; egl-30(ad805) I; Ex[Punc-25::egl-30 + Pmyo-2::dsredm]
KU459	juls76 II; egl-30(ad805) I;
KU460	juls76 II; egl-8(nd971) V
KU461	<i>juls76</i> II; <i>tpa-1(k501)</i> IV
KU462	<i>juls76</i> II; <i>mlk-1(km19)</i> V
KU463	juls76 II; mlk-1(km19) V; egl-30(ad805) I
KU464	juls76 II;
KU465	juls76 II; mlk-1(km19) V; Ex[Punc-25::mlk-1 S355A + Pmyo-2::dsredm]
KU466	juls76 II; mlk-1(km19) V; Ex[Punc-25::mlk-1 S355E + Pmyo-2::dsredm]
KU467	juls76 II; mlk-1(km19) V; egl-30(tg26) I
KU468	juls76 II; svh-2(tm737) X
KU469	juls73 III; shc-1(ok198) I
KU470	juls76 II; tpa-1(k501) IV; Ex[Punc-25::mlk-1 S355A + Pmyo-2::dsredm]
KU471	juls76 II; tpa-1(k501) IV; Ex[Punc-25::mlk-1 S355E + Pmyo-2::dsredm]
KU472	juls76 II; mlk-1(km19) V; tpa-1(k501) IV
KU473	juls76 II; egl-30(ad805) I; svh-2(tm737) X
KU474	juls76 II; tpa-1(k501) IV; svh-2(tm737) X