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Supplementary Figure 1. Oligomeric state and purity of mZuc. Recombinant mZuc 
is dimeric as determined by gel filtration chromatography (blue, left axis) and multi-angle 
light scattering (red, right axis) and is highly purified as assessed by SDS-PAGE (inset). 
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Supplementary Figure 2. Phospholipase activity was not detected for mZuc. a) A 
TLC-based assay was used to evaluate cardiolipin cleavage. Defined liposomes 
(PC:PE:PS:CL at 2:2:1:1) or extract-based liposomes (made with bovine heart lipid 
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extract supplemented with CL) were incubated with purified mZuc under various 
conditions. In every case, wild-type mZuc and catalytically inactive mZuc H153N 
showed no detectable cleavage of cardiolipin or formation of PA. In contrast, a known 
phospholipase D from S. chromofuscus completely eliminated CL from each reaction. 
Lipid identification was based on standards run in parallel. Migration distances for the 
standards are indicated to the right of the TLC plates. b-c) SRM-MS was used to 
monitor the disappearance of CL and appearance of PA for defined liposome reactions 
under (b) phospholipase and (c) nuclease buffer conditions. No significant changes 
were observed for reactions containing mZuc/PLD6. The positive control showed 
complete hydrolysis of CL and a striking increase in the abundance of PA. Error bars 
indicate ± the standard deviation. Note that panel b is duplicated from the main text but 
is reproduced here for the convenience of the reader. 
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Supplementary Figure 3. mZuc shows single-strand (ss) endonuclease activity in 
vitro. a) mZuc catalysis does not require divalent cations as evidenced by ssDNase 
activity in the presence of EDTA. While divalents were not required, certain ions (Ca2+, 
Mn2+, and Zn2+) enhanced the activity. b) mZuc cleaves ssRNA in vitro. As is the case 
for the ssDNase activity, addition of 4 mM Na3VO4 or the H153N mutation abolishes the 
ssRNase activity of mZuc. Phospholipase D from Streptomyces chromofuscus (scPLD) 
did not exhibit nuclease activity. Reactions were analyzed by Urea-PAGE (15%). c) 
mZuc releases DNA products with 3’ OH termini. DNA fragments are extracted from 
mZuc cleavage reaction and incubated with Terminal deoxynucleotidyl Transferase 
(TdT) in the presence of ddATP or dATP (as indicated). 
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Supplementary Figure 4. mZuc proceeds through a phosphohistidine 
intermediate and binds nucleic acids directly. a) As proposed by Dixon and 
colleagues15,18, the HKD phosphodiesterase mechanism consists of two distinct steps. 
In the first step, the lone pair of the imidazole nitrogen of HisA153 attacks the scissile 
phosphate leading to an SN2 reaction and the formation of a covalent phosphohistidine 
intermediate. The leaving group then abstracts a proton from the opposing (protonated) 
HisB153. In the second step, a proton is abstracted from water by the deprotonated 
HisB153. The activated water then attacks the phosphohistidine intermediate resulting in 
product release. b) SRM-MS was used to confirm and further pinpoint the location of the 
phosphistidine intermediate. Chromatograms show the transition ion intensity for 
numerous fragments from the phosphorylated (red, orange, yellow traces) and 
unphosphorylated (green, blues, purple traces), +4 charge state, His 153-containing 
peptide precursors. Based on the ions observed, the location of the phosphorylation 
could be mapped to residues 152-154.  
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Supplementary Figure 5. mZuc binds ssDNA and ssRNA with comparable affinity. 
Binding affinity measurements for mZuc (wildtype and H153N mutant) with both ssDNA 
and ssRNA were measured using fluorescence polarization. The affinity in each case is 
roughly 50 nM. 
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Supplementary Figure 6. The hydrogen bond network of mZuc. Similar to that 
observed in the structure of Nuc18, mZuc has an extensive active site hydrogen bonding 
network which spans the dimerization interface. Side chains for monomer A are in red, 
side chains for monomer B are in blue, tungstate is in purple, and hydrogen bonds are 
indicated as dashed grey lines. Distances are expressed in Å and indicate the 
separation of the non-hydrogen nuclei. The distance from Nε of His153 to the tungsten 
atom is 3.0 Å. 
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Supplementary Figure 7. Coordination geometries of bound ligands. a) Stylized 
drawing of the mZuc structure. The active site is formed by the dimerization interface 
with the zinc wings extending away from the center of the homodimer. b) An 
unexpected CCCH zinc wing was found in the protein consisting of residues Cys49, 
Cys66, Cys68, and His72. c) The identity of the Zn2+ was confirmed by calculating 
anomalous difference maps for datasets collected from the same crystal above 
(contoured at 10 and 15σ) and below the Zn2+ K edge (no signal detectable above the 
noise). d) mZuc co-crystallized with tungstate bound tungstate exclusively in the active 
site. e) The anomalous difference map (contoured at 5 and 10σ) indicates the presence 
an anomalous scatterer in the active site only for the tunstate-containing co-crystals. 
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Supplementary Figure 9. Various views of the mZuc electrostatic surface. In 
addition to the positively-charged groove which spans the active site, two negative 
patches are present on the top surface of the dimer. Another positively charged patch is 
also present on the underside of the protein, which may serve to strengthen the 
attachment of the protein to the negatively-charged phospholipid head groups on the 
surfaces of the underlying mitochondrial membrane. Each surface depicts the solvent-
accessible surface contoured at ± 2 kBT/e. Surfaces were calculated using APBS30 with 
a solvent ion concentration of 0.15 M. The active site region is indicated with a dashed 
circle in the top-down and side views. 
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Supplementary Figure 10. Views of RNA in the active site groove. a) Using the 
structure of the mZuc, a short RNA molecule was manually built into the model then 
subjected to energy minimization using GROMACS25. The minimized model (RNA in 
green) shows the phosphates of the RNA backbone positioned in the most positively 
charged areas of the groove with the bases extending away from the dimer core. b) A 
close-up view of the active site places the RNA (purple) in the active site groove with 
the scissile phosphate (circled) situated directly between the catalytic histidines. 
Conserved active site residues are shown as sticks (grey) overlaid on the ribbon 
diagram (colored as in Fig. 3, faded).  
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Supplementary Table 1. Data collection and refinement statistics 
 mZuc  mZuc + Na2WO4 
Data collection     
Space group P43212  P43212  
Cell dimensions       
    a, b, c (Å) 38.7, 38.7, 214.5  38.9, 38.9, 213.3  
    α, β, γ  (°) 90, 90, 90  90, 90, 90  
     
   Above Zn2+ peak Below Zn2+ edge 
Wavelength 1.0750 Å 

 
 1.2716 Å 

 
1.2983 Å 
 

Resolution (Å) 40.0-1.75 
(1.85-1.75) 

 40.0-2.10 
(2.23-2.10) 

40.0-2.20 
(2.32-2.20) 

Rsym or Rmerge 4.8 (27.8)  5.9 (29.7) 5.7 (32.1) 
I/σI 21.3 (5.9)  24.0 (7.5) 24.8 (7.1) 
Completeness (%) 98.1 (98.8)  99.7 (98.5) 99.9 (100.0) 
Multiplicity 6.8 (6.9)  10.2 (10.5) 10.2 (10.6) 
     
Refinement     
Resolution (Å) 40.0-1.75 (1.80-1.75)  40.0-2.10 (2.16-2.10)  
No. reflections 16154 / 862 (1143 / 65)  9676 / 514 (565 / 35)  
Rwork/ Rfree 17.5 / 19.7 (24.9 / 25.2)  20.9 / 25.1 (22.6 / 29.4)  
No. atoms     
    Protein 1336  1316  
    Ligand/ion 1 (Zn2+)  6 (1 Zn2+; 1 WO4

2-)  
    Water 105  35  
B-factors**     
    Protein 28.3  41.6  
    Ligand/ion 33.4 (Zn2+)  64.1 (Zn2+) 

49.3 (WO4
2-) 

 

    Water 23.1  24.5  
R.m.s deviations     
    Bond lengths (Å)  0.011  0.013  
    Bond angles (°) 1.281  1.382  
*Highest resolution shell is shown in parenthesis. 
**The TLS contribution is included in the presented average B-factors. 
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