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Interpretation of estrangement confinement as ran-

dom walk temporal stability

Here we show that estrangement has a principled interpretation in the form of a con-

nection to the notion of stability of random walks introduced by Lambiotte et al. [1],

and further investigated by Mucha et al. [2]. Stability compares the probability that

a random walker at stationarity is in the same community after a step, with the anal-

ogous probability obtained for a random walker on a degree-sequence preserving null

model of the network under consideration, yielding the following expression:

Sstructural =
1

2M

∑

uv

(

Auv −
kukv

2M

)

δ(lu, lv)

Here, we refer to stability as defined in [1] as structural stability as it is a function

solely of the structure of the network. Sstructural is identical to modularity as shown in

[1].

We extend the notion of stability to temporal networks by incorporating an addi-

tional term which characterizes the temporal stability of a random walk. The temporal

stability (of a partition Pt) compares the probability that a random walker in Gt at

stationarity, walks along a historical edge – an edge in Gt that was an intra-community

edge at t − 1 – and ends up in the same community, with the value of this probabil-

ity obtained in the maximally temporally stable case viz. the case where the chosen

partition for Gt makes every historical edge an intra-community edge. Thus, temporal

stability measures the degree to which a random walker’s environment remains invari-

ant (i.e. it is in the same community) after a one step walk in t, given that it was

invariant for a one step walk in t− 1.

Formally, the temporal stability as defined above can be written as:

Stemporal =
∑

uv

Zuv

2M
δ(lu, lv)−

∑

uv

Zuv

2M

where lu, lv are defined by the partition Pt under consideration, and Zuv is as defined

in Eq. 3 in Results in the main paper. Here, the second term is the one obtained

for the maximally temporally stable case. As is clear from the definition of E (Eq. 3

of main paper), Stemporal = −E. Thus, Stemporal ≤ 0. It follows that the constrained

optimization problem to be solved for finding temporal communities – Eq. 1 in the main
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paper – is equivalent to the problem of maximizing structural stability, Sstructural, while

constraining temporal stability, Stemporal, to be greater than or equal to −δ (where δ

is non-negative). Thus, estrangement confinement has a fundamental interpretation in

terms of the properties of a random walk on the evolving network.

Estrangement and overlapping communities

Communities in networks often overlap such that nodes can simultaneously belong to

multiple groups. Methods for uncovering overlapping communities in static networks

have been recently proposed by Ahn et al. [3], and Evans and Lambiotte [4]. Temporal

communities can also reveal overlapping communities in the aggregate network com-

prising all snapshots, since a node can participate in multiple communities over time.

The definition of estrangement is easily generalized to the case where even within a

snapshot nodes may belong to multiple overlapping communities. If the overlapping

community membership of a node in a given snapshot is represented by a set of labels,

we first define the consort score of an edge as the Jaccard similarity of label sets of

the endpoint nodes. Estrangement is then defined as the sum over all edges, of the

difference in consort score of an edge from time t to t − 1, divided by the number of

edges. This definition clearly reduces to the definition in the main paper if the label sets

are of size one, i. e. , the communities are non-overlapping. Note that this generalized

definition of estrangement is decomposable into node-local components as well, and

thus – similar to our method for non-overlapping communities – methods for finding

overlapping communities can be adapted to find overlapping temporal communities by

constraining this generalized estrangement.

The Lagrangian L is unaffected by the induce-graph

operation

In HLPA, after the local update rule (Eq. 6 in main paper) has converged, a new graph

is induced from the current graph and the partition that the update rule has converged

to. In this new graph, the communities of the converged partition play the role of

the nodes, which we call “supernodes”. Each supernode in the induced graph has a

self-loop with a weight equal to twice the sum of weights of all links in the original

graph contained in the community that forms the supernode. Similarly, a link between
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two supernodes has a weight equal to the sum of the weights of all edges connecting

the two communities represented by the supernodes in the original graph.

Here we prove that the modularity Q and the estrangement E computed for a

partition of an induced graph yields the same result as that computed when considering

all nodes and edges within the supernodes of the induced graph. As a result, the

Lagrangian computed for a partition on the induced graph is also identical to that

computed when taking into account all nodes and edges contained within them. We

use indices u,v to refer to supernodes of an induced graph, and i,j to refer to nodes of

the original graph (contained within supernodes of the induced graph). Thus u and v

also refer to community labels at the previous hierarchical level. For a given partition

of the induced graph the modularity can be written as :

Qinduced =
∑

c

∑

u,v∈c

(

Auv

2M
−

kukv

(2M)2

)

where c runs over indices of the different communities. We can writeAuv as
∑

i∈u,j∈v
Aij.

Similarly, ku =
∑

i∈u
ki and kv =

∑

j∈v
kj which gives:

Qinduced =
∑

c

∑

u,v∈c

(

∑

i∈u,j∈v

Aij

2M
−

∑

i∈u,j∈v

kikj

(2M)2

)

By transitivity of the community labels (i.e. i ∈ u and u ∈ c =⇒ i ∈ c), we can

therefore write:

Qinduced =
∑

c

∑

i,j∈c

(

Aij

2M
−

kikj

(2M)2

)

which is identical to the modularity of the same partition computed over nodes of the

original graph. Similarly, the term which accounts for the contribution from estrange-

ment due to a partition of the induced graph can be written as:

∑

u,v

Zuv

2M
δ(lu, lv) =

∑

c

∑

u,v∈c

Zuv

2M

where, as before, c runs over the indices of the different communities. We can write

Zuv =
∑

i∈u,j∈v
Zij . Thus the estrangement term becomes:

∑

c

∑

u,v∈c

∑

i∈u,j∈v

Zij

2M
=

∑

c

∑

i,j∈c

Zij

2M
=

∑

ij

Zijδ(li, lj)
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which is identical to the estrangement term computed on the original graph. It follows

that for a given partition the Lagrangian is preserved when moving from the original

graph to the induced graph.
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