SUPPORTING INFORMATION

Figure S1 Qrr sRNAs activate *V. cholerae aphA* expression through base pairing Figure S2 Qrr sRNA pairing predictions with *luxMN* and *vca0939* Figure S3 Phylogenetic analyses of *aphA*, *luxR and luxO* Figure S4 *aphA* sequence alignment Figure S5 Qrr sRNAs use unique pairing regions to regulate different targets Figure S6 Expression level of multiple AphA-GFP mutants in *E. coli* Supplemental Table S1 Strains used in this study Supplemental Table S2 Plasmids used in this study

Figure S1 Qrr sRNAs activate *V. cholerae aphA* expression through base pairing (A) Fluorescence from plasmid-encoded *V. cholerae* AphA-GFP (pYS143) or mutant AphA-GFP (pYS150, mutation A; pYS147, mutation B, denoted mut A and mut B as in Figure 3A) translational fusions were measured in *E. coli* MC4100 carrying an empty vector (pRHA109), a vector expressing a rhamnose-inducible *qrr*4 gene (pSTR0227) or a mutant *qrr*4 gene (pYS121, mutation I; pYS120, mutation II, denoted mut i and mut ii as in Figure 3A). GFP from three independent cultures was measured for each strain and the means and SEMs are shown. (B) AphA protein levels in a *V. cholerae* $\Delta cqsA \Delta luxQ$ strain with wild type *aphA* (YZW477) or *aphA* carrying mutation A (see Figure 3A) (YS2013). Cells were harvested at OD₆₀₀~1.0, and protein levels were determined using Western blot.

		-34 ↓								+18 ↓	\$
luxM	5'	A	AAA	CAUAAAA	: 1	J	CAU	AAA	UU	A	3'
		U	AA	AAC	UUGGCUAGG	UGACCO	G	UUAAUG	;	GUC	
		A	UU	UUG	AACCGAUCC	ACUGGO	C C	AAUUAU	Ţ (CAG	
Qrr4	3'	GUG	G	CAGUC			AGC (G	UCC	A	
		↑ 48			Regio	on II		Region I		1 1	

Figure S2 Qrr sRNA pairing predictions with *luxMN* and *vca0939* Sequence alignment of *V. harveyi* Qrr4 (nucleotides1-48) with the *V. harveyi luxMN* mRNA and *V. cholerae* Qrr4 (nucleotides 1-47) with the *V. cholerae vca0939* mRNA, Region I and Region II are highlighted as in Figure 3A and 4A.

Figure S3 Phylogenetic analyses of *aphA*, *luxR* and *luxO*

Phylogenetic trees were built for Vibrionaceae species containing aphA genes.

Vibrio_cholerae_C6706 Vibrio_cholerae_0395 Vibrio_harveyi Vibrio_parahaemolyticus Vibrio_splendidus_LGP32 Vibrio_vulnificus_CMCP6 Vibrio_vulnificus_YJ016	TATTCCACTITATGCTTATTATTAGATATACTACGTCCCCTCTGTGAT- TATTCCACTITATGCTTATTATTTAGATATACTACGTCCCTCTGTGAT- TATTCCACTICATGCTTATTATTTATATACTACTACTCCCTGCTGGAAGC TATTCCACTICATGCTTATTATTTATATACTACTGCCTGCCTGAGAGC TATTCCACTITATGCTTATTATTTAGATATACTACTGCTCCGCTGCGGA- TATTCCACTITATGCTTATTATTTAGATATACTACTCATCCGCTGCGGA- TATTCCACTITATGCTTATTATTTAGATATACTACTCATCCGCTGCGGA- TATTCCACTITATGCTTATTATTTAGATATACTACTCATCCGCTGCGGA-	49 48 48 49 49 49
	Promoter Transcription Start	
Vibrio_cholerae_C6706 Vibrio_cholerae_0395 Vibrio_harveyi Vibrio_parahaemolyticus Vibrio_splendidus_LGP32 Vibrio_vulnificus_CMCP6 Vibrio_vulnificus_YJ016	AAGTAATGTAAAGCAATCTCACAGTTAAAGTATGCAAAGACATACGCC AAGTAATGTAAAGCAATCTCACAGTTAAAGTATGCAAAGACATACGCC TCACAAATCCAATCAAATAAGCTCCAGCTCGATGGAAAC-ATCCATCA TCATAAATCCAATCATACCTGCTCCAGCCT-GATGGGAAT-CCCCATC- -AACACTCCAAATAATAAT-CTGCGGCACTCGACC-AATAAACTGGTCA TCACACATCAAAATAATATTCTGCAGC-CT-GATGGAATCGCTCCATCC TCACACATCAAA-TATTATTTCCGTAGC-CT-GATGGAATCACTCCATCC * ** * * * * * * * * * *	97 97 95 95 96 97 96
Vibrio_cholerae_C6706 Vibrio_cholerae_O395 Vibrio_harveyi Vibrio_parahaemolyticus Vibrio_splendidus_LGP32 Vibrio_vulnificus_CMCP6 Vibrio_vulnificus_YJ016	ACTCTAGGTGATAACCGGCTTTATAAGGTGACATAAGCAGCCGAATTT ACTCTAGGTGATAACCGGCTTTATAAGGTGACATAAGCAGCCGAATTT ACTCTAGGTGATAAACGGCTTTA-A-GGTGACAGGACCAAC-ATTGTT TCTAGGTGATAAACGGCTTTA-A-GGTGACAGGACCAAC-ATTGTT A-CCTAGGTGATAAACGGCTTTG-AAGGTGACAAGACCAACCATGGATTGAGTT ACCCTAGGTGATAAACGGCTTTA-AAGGTGACAGGACCAAC-ATTGTT ACCCTAGGTGATAAACGGCTTTA-AAGGTGACAGGACCAAC-ATTGTT ACCCTAGGTGATAAACGGCTTTA-AAGGTGACAGGACCAAC-ATTGTT	145 145 140 138 145 143 142
	Qrr Pairing Region	
Vibrio_cholerae_C6706 Vibrio_cholerae_O395 Vibrio_harveyi Vibrio_parahaemolyticus Vibrio_splendidus_LGP32 Vibrio_vulnificus_CMCP6 Vibrio_vulnificus_YJ016	TGCGCTGCAGGTATTTAAATGCGTTGATATGAGTGCCATTAGAAGCACAA TGCGCTGCAGGTATTTAAATGCGTTGATATGCGTGCCATTAGAAGCACAA GGTGCTATCTACACATTAAAAAACTTAAGCGTCATGAAGAACGCAA GGTGCTACTTATACATTAAAAAACTCAAGCGCCCATAGAAGACGCAA GGTGCTACTTGAACATAAAAACTCAGGTGCCA-TAGAAGACGCAA GGTGCTACTTGAACATAAACAAATTCGTGCCA-TAGAAGCACAC GGTGCTGACTGCACATAAACAAATTGCATCAACAAGAATGTAA GGTGCTGACTGCACATAAACAAATTGCATCAACAAGAATGTAA * *** * * *	195 195 186 184 190 186 185
Vibrio_cholerae_C6706 Vibrio_cholerae_0395 Vibrio_harveyi Vibrio_parahaemolyticus Vibrio_splendidus_LGP32 Vibrio_vulnificus_CMCP6 Vibrio_vulnificus_YJ016	CAACC-GTTTAGATAGAG-GTTTATGTTGACTTAATTTTTGGATTGAA CAACC-GTTTAGATAGAA-GTTTATGTTGACTTAATTTTTGGATTGAA ATGAAAGTGTAGATAGCTTGTTTACAAGTTTATTGACCATTTGGATTGAA CTGAAAGTATAAGTAGCTTGTTTACAAGTTTATTGACCATTTGGATTGAA TTGTT-GTTCAAGTA-TTTGTTTACTGTTTACCATTTGGATTGAA ACGCC-GTGCAGGCAGCTTGTTCATAAGTTTATTGACCATTTGGATTGAA ACGCC-GTGCAGGCAGCTTGTTCATAAGTTTATTGACCATTTGGATTGAA ACGCC-GTGCAGGCAGCTTGTTCATAAGTTTATTGACCATTTGGATTGAA ACGCC-GTGCAGGCAGCTTGTTCATAAGTTTATTGACCATTTGGATTGAA	241 236 234 233 235 234
Vibrio_cholerae_C6706 Vibrio_cholerae_0395 Vibrio_harveyi Vibrio_parahaemolyticus Vibrio_splendidus_LGP32 Vibrio_vulnificus_CMCP6 Vibrio_vulnificus_YJ016	GACATGTCATTACCACACGTTATCCTTACTGTTCTTAGCACACGCGATGC 2 GACATGTCATTACCACACGTTATCCTTACTGTTCTTAGCACACGCGATGC 2 GACATGTCATTACCACACGTAATTCTAACTGTACTTAGCACTCGCGACGC 2 GACATGTCATTACCACACGTAATTCTAACTGTTCTTAGCACTCGCGACGC 2 GACATGTCATTACCACACGTAATTTTAACCGTTTTAAGTACACGCGATGC 2 GACATGTCATTACCACACGTAATTCTAACCGTTTTAAGCACTCGTGATGC 2 GACATGTCATTACCACACGTAATTCTAACCGTTTTAAGCACTCGTGATGC 2	291 291 286 284 283 285 285

Start Codon

Figure S4 *aphA* sequence alignment

Sequence alignment of *aphA* genes in *Vibrionaceae* species with multiple Qrr sRNAs. Predicted promoters, conserved Qrr pairing regions, and start codons are indicated.

С

Figure S5 Qrr sRNAs use unique pairing regions to regulate different targets (A)(B)(C) Fluorescence from plasmid-encoded *V. harveyi* AphA-GFP (pYS069), LuxR-GFP (pYS141) and LuxO-GFP (pYS142) translational fusions were measured in *E. coli* MC4100 carrying an empty vector (pRHA109), a vector expressing a rhamnose-inducible *qrr*4 gene (pSTR0227), or a mutant *qrr*4 gene (pYS153, denoted mut iii as in Figure 3A and 4A). GFP from three independent cultures was measured for each strain and the means and SEMs are shown.

А

Figure S6 Expression level of multiple AphA-GFP mutants in E. coli

Fluorescence from a plasmid-encoded *V. harveyi* AphA-GFP translational fusion (pYS069, wt) was measured in *E. coli* MC4100 carrying an empty vector (pRHA109) or a vector expressing a rhamnose-inducible *qrr*4 gene (pSTR0227). Ten mutations in the *aphA* 5'UTR were engineered to disrupt the putative inhibitory structure. Fluorescence from these constructs was similarly measured. The mutations denoted mut 1 through mut 6 are deletions colored in blue and red. Mutations denoted mut 7 through mut 10 are point mutations colored in green. GFP from three independent cultures was measured for each strain and the means and SEMs are shown.

	Supplemental Table S1. Strains used in this study.			
Strain	Relevant Genotype	Source		
E. coli				
S17λpir	wild type	(de Lorenzo & Timmis, 1994)		
MC4100	wild type	(Casadaban, 1976)		
V. harveyi				
BB120	wild type	(Bassler <i>et al.</i> , 1997)		
KM83	luxOD47E	(Tu & Bassler, 2007)		
KM669	ΔluxR	(Pompeani <i>et al.</i> , 2008)		
KM812	luxOD47Ε Δ luxR	K. Mok, unpublished		
YS040	luxOD47E Δqrr1-5 ΔhapR	this study		
YS010	$\Delta luxM \Delta luxPQ \Delta cqsS \Delta luxR$	this study		
YS034	YS010 with aphA mutation A	this study		
V. cholerae				
C6706str2	wild type	(Thelin & Taylor, 1996)		
SLS340	luxOD47E	S. Svenningsen, unpublished		
SLS390	ΔhapR	(Svenningsen <i>et al.</i> , 2008)		
SLS640	luxOD47E ΔhapR	S. Svenningsen, unpublished		
SLS641	luxOD47E Δqrr1-4 ΔhapR	S. Svenningsen, unpublished		
YZ477	ΔcqsA ΔluxQ	Y. Wei, unpublished		
YS2013	YZ477 with aphA mutation A	this study		

Supplemental Table S2. Plasmids used in this study.

		5
Plasmid	Description	Source
pEVS143	empty vector	(Dunn <i>et al.</i> , 2006)
pYS069	pEVS143 with <i>V. harveyi</i> AphA-GFP	(Rutherford et al., 2011)
pYS113	pYS069 with mutation A	this study
pYS112	pYS069 with mutation B	this study
pYS141	pEVS143 with <i>V. harveyi</i> LuxR-GFP	this study
pYS142	pEVS143 with <i>V. harveyi</i> LuxO-GFP	this study
pYS143	pEVS143 with V. cholerae AphA-GFP	this study
pYS150	pYS143 with mutation A	this study
pYS147	pYS143 with mutation B	this study
pRHA109	empty vector	(Giacalone <i>et al.</i> , 2006)
pYS122	pRHA109 with <i>V. harveyi qrr</i> 1	this study
pSTR0227	pRHA109 with <i>V. harveyi qrr</i> 4	(Rutherford et al., 2011)
pYS121	pSTR0227 with mutation i	this study
pYS120	pSTR0227 with mutation ii	this study
pYS153	pSTR0227 with mutation iii	this study
pLAFR2	empty vector	(Friedman <i>et al.</i> , 1982)

pBB39-3	pLAFR2 with <i>V. harveyi aphA</i>	(Bassler <i>et al.</i> , 1993)
pYS130	pBB39-3 with mutation A	this Study
pKAS32	empty vector	(Skorupski & Taylor, 1996)
pYS148	pKAS32 with V. cholerae aphA	this study
pYS152	pYS148 with mutation A	this study
pYS159	pLAFR2 with ∆qrr1-luxOD47E	this study
pKD3	FRT sites flanking Cm ^R gene template	(Datsenko & Wanner, 2000)
pKD46	Red recombinase expression plasmid	(Datsenko & Wanner, 2000)
pPH1JI	pLAFR2 incompatible plasmid	(Hirsch & Beringer, 1984)
pTL18	IPTG inducible FLP recombinase	(Long <i>et al.</i> , 2009)
pYS096	pYS069 with mutation 1	this study
pYS098	pYS069 with mutation 2	this study
pYS099	pYS069 with mutation 3	this study
pYS100	pYS069 with mutation 4	this study
pYS101	pYS069 with mutation 5	this study
pYS103	pYS069 with mutation 6	this study
pYS174	pYS069 with mutation 7	this study
pYS176	pYS069 with mutation 8	this study
pYS177	pYS069 with mutation 9	this study
pYS178	pYS069 with mutation 10	this study

Supplemental Table S3. Primers used in this study.

Primer	Sequence	Use
YS100	GCGGGTACCGCTAGCAAAGGAGAAGAACTC	pYS069/pYS141/pYS142/pYS143
YS101	GCGCCTAGGGTCGAGCTGTTTCCTGTGT	pYS069/pYS141/pYS142/pYS143
YS086	GCGCCTAGGCCTGCTGGAAGCTCACAAAT	pYS069
YS099	GCGGGTACCTACAGTTAGAATTACGTGTGGTAA	pYS069
YS335	ATCAACTCTAGGTGATAAACCCGATTAAGGTGACAGGACCAACA	pYS113
YS336	TGTTGGTCCTGTCACCTTAATCGGGTTTATCACCTAGAGTTGAT	pYS113
YS333	TGGAAACATCCATCAACTCTTCCAGATAAACGGCTTTAAGGTGA	pYS112
YS334	TCACCTTAAAGCCGTTTATCTGGAAGAGTTGATGGATGTTTCCA	pYS112
YS357	GCGCCTAGGCAATTAGGGGATTATCCCCAAAACATC	pYS141
YS358	GCGGGTACCAGTACGAGGTCTCTTTGCAATTGAG	pYS141
YS359	GCGCCTAGGAAAACACAACGAAAAATCGGCTAGGC	pYS142
YS360	GCGGGTACCAGACTTTTGACCTTCTGTTATTTGTTGCAT	pYS142
YS399	GCGCCTAGGCCTCTGTGATAAGTAATGTAAAGCAATC	pYS143
YS400	GCGGGTACCAACAGTAAGGATAACGTGTGGTAATGA	pYS143
YS443	CGCCACTCTAGGTGATAACCCCGATTATAAGGTGACATAAGCAG	pYS150/pYS152
YS444	CTGCTTATGTCACCTTATAATCGGGGTTATCACCTAGAGTGGCG	pYS150/pYS152
YS441	GCAAAGACATACGCCACTCTTCCAGATAACCGGCTTTATAAGGT	pYS147
YS442	ACCTTATAAAGCCGGTTATCTGGAAGAGTGGCGTATGTCTTTGC	pYS147
STR0067	CAGACGGTACCATATGCGGTGTG	pSTR0227/pYS122
STR0068	GTATCGTATACGACCAGTCTAAAAAGCG	pSTR0227/pYS122

STR0069	GGACCCCTCGGGTCACC	pYS122
STR0070	CAGTGGTACCTGCAGACAAAAAAGAA	pYS122
YS369	GGACCCCTCGGGTCACCTAGCCAACTGACGTTGTTAGTG	pYS122
YS370	CACTAACAACGTCAGTTGGCTAGGTGACCCGAGGGGGTCC	pYS122
STR0075	AGACCCTTATTAAGCCGAGGGTCAC	pSTR0227
STR0076	CAGTGGTACCGCTCTAGAAAGAAAAAACGCCAATCACAATAAAGTTG	pSTR0227
YS351	CTGGTCGTAGACCCTTATTATCGGGAGGGTCACCTAGCCAACTG	pYS121
YS352	CAGTTGGCTAGGTGACCCTCCCGATAATAAGGGTCTACGACCAG	pYS121
YS349	CCCTTATTAAGCCGAGGGTCTGGAAGCCAACTGACGTTGTTAGT	pYS120
YS350	ACTAACAACGTCAGTTGGCTTCCAGACCCTCGGCTTAATAAGGG	pYS120
YS479	CCGAGGGTCACCTAGCCAACACTCGTTGTTAGTGAATACACAT	pYS153
YS480	ATGTGTATTCACTAACAACGAGTGTTGGCTAGGTGACCCTCGG	pYS153
YS377	CCTGCTGGAAGCTCACAAATC	pYS130
YS366	TACAGTTAGAATTACGTGTGGTAATGACAT	pYS130
YS367	ATGTCATTACCACGTAATTCTAACTGTA	pYS130
YS290	GAGGATATTCATATGGACGAATTAGCCGATCACTTCAAG	pYS130
YS291	CATATGAATATCCTCCTTAGTTCCTATT	pYS130
YS292	TGTAGGCTGGAGCTGCTTCG	pYS130
YS293	CAGCTCCAGCCTACAACTTTAAATAAAACGAAAAAGGCTTGCCG	pYS130
YS376	CACTCTAGGTGTTCGTCCACAAG	pYS130
YS409	GCGGGTACCGCGCTACTTGAAGAGATGTGC	pYS148
YS412	GCGCCTAGGGCTGGAGTACCTGCTCGTATT	pYS148
YS451	GCGGGATCCGTAAAGAGACGCTGGTGGAGTTTG	pYS159
YS452	ATGCTGTATACTTTTATGCCCGAGCTATGGTCGTAG	pYS159
YS453	AAAAGTATACAGCATGGTTTGTGCC	pYS159
YS467	AGACGGAGCTCGAGCAGAATAAGATCAGGAATGCGATGGTTC	pYS159
YS468	TGCTCGAGCTCCGTCTACCTGATATGACGGGGATGGAC	pYS159
YS454	GAGGATATTCATATGCGTTGCGCTTAATGTCTTGCTCG	pYS159
YS455	CAGCTCCAGCCTACAAAAGCCCTTCCGGTGTGGAA	pYS159
YS456	GCGGGATCCCTCGGAGCGTTTCGCGAACTG	pYS159
YS155	CTCGACCCTAGGCCTGCTGGATAAGCTCCAGCTCGATGGA	pYS096
YS156	TCCATCGAGCTGGAGCTTATCCAGCAGGCCTAGGGTCGAG	pYS096
YS159	ATAAGCTCCAGCTCGATGGAGATAAACGGCTTTAAGGTGA	pYS098
YS160	TCACCTTAAAGCCGTTTATCTCCATCGAGCTGGAGCTTAT	pYS098
YS161	AACATCCATCAACTCTAGGTCAGGACCAACATTGTTGGTG	pYS099
YS162	CACCAACAATGTTGGTCCTGACCTAGAGTTGATGGATGTT	pYS099
YS163	GATAAACGGCTTTAAGGTGACTATCTACACATTAAAAAAC	pYS100
YS164	GTTTTTTAATGTGTAGATAGTCACCTTAAAGCCGTTTATC	pYS100
YS165	CAGGACCAACATTGTTGGTGTTAAGCGTCATGAAGAACGC	pYS101
YS166	GCGTTCTTCATGACGCTTAACACCAACAATGTTGGTCCTG	pYS101
YS171	AAATGAAAGTGTAGATAGCTATTTGGATTGAAGACATGTC	pYS103
YS172	GACATGTCTTCAATCCAAATAGCTATCTACACTTTCATTT	pYS103
YS565	CTCGATGGAAACATCCATCAACTCTACCACTAAAACGGCTTTAAGGTGACAGGACCAA	pYS174
YS566	TTGGTCCTGTCACCTTAAAGCCGTTTTAGTGGTAGAGTTGATGGATG	pYS174

YS571	GGTGACAGGACCAACATTGTTGGTGCATAGATGACATTAAAAAACTTAAGCGTCATGAA	pYS176
YS572	TTCATGACGCTTAAGTTTTTTAATGTCATCTATGCACCAACAATGTTGGTCCTGTCACC	pYS176
YS573	GCGTCATGAAGAACGCAAATGAAAGTCATCTATGCTTGTTTACAAGTTTATTGACCATT	pYS177
YS574	AATGGTCAATAAACTTGTAAACAAGCATAGATGACTTTCATTTGCGTTCTTCATGACGC	pYS177
YS575	AGAACGCAAATGAAAGTGTAGATAGCAACAAATGAAGTTTATTGACCATTTGGATTGAAG	pYS178
YS576	CTTCAATCCAAATGGTCAATAAACTTCATTTGTTGCTATCTACACTTTCATTTGCGTTCT	pYS178

References

- Bassler, B. L., E. P. Greenberg & A. M. Stevens, (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179: 4043-4045.
- Bassler, B. L., M. Wright, R. E. Showalter & M. R. Silverman, (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. *Mol Microbiol* **9**: 773-786.
- Casadaban, M. J., (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. *J Mol Biol* **104**: 541-555.
- Datsenko, K. A. & B. L. Wanner, (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci U S A* **97**: 6640-6645.
- de Lorenzo, V. & K. N. Timmis, (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. *Methods Enzymol* **235**: 386-405.
- Dunn, A. K., D. S. Millikan, D. M. Adin, J. L. Bose & E. V. Stabb, (2006) New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. *Appl Environ Microbiol* **72**: 802-810.
- Friedman, A. M., S. R. Long, S. E. Brown, W. J. Buikema & F. M. Ausubel, (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. *Gene* 18: 289-296.
- Giacalone, M. J., A. M. Gentile, B. T. Lovitt, N. L. Berkley, C. W. Gunderson & M. W. Surber,
 (2006) Toxic protein expression in Escherichia coli using a rhamnose-based tightly
 regulated and tunable promoter system. *Biotechniques* 40: 355-364.
- Hirsch, P. R. & J. E. Beringer, (1984) A physical map of pPH1JI and pJB4JI. *Plasmid* **12**: 139-141.
- Long, T., K. C. Tu, Y. Wang, P. Mehta, N. P. Ong, B. L. Bassler & N. S. Wingreen, (2009) Quantifying the integration of quorum-sensing signals with single-cell resolution. *PLoS Biol* **7**: e68.
- Pompeani, A. J., J. J. Irgon, M. F. Berger, M. L. Bulyk, N. S. Wingreen & B. L. Bassler, (2008) The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. *Mol Microbiol* **70**: 76-88.
- Rutherford, S. T., J. C. van Kessel, Y. Shao & B. L. Bassler, (2011) AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. *Genes Dev* **25**: 397-408.

- Skorupski, K. & R. K. Taylor, (1996) Positive selection vectors for allelic exchange. *Gene* **169**: 47-52.
- Svenningsen, S. L., C. M. Waters & B. L. Bassler, (2008) A negative feedback loop involving small RNAs accelerates Vibrio cholerae's transition out of quorum-sensing mode. *Genes Dev* 22: 226-238.
- Thelin, K. H. & R. K. Taylor, (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. *Infect Immun* **64**: 2853-2856.
- Tu, K. C. & B. L. Bassler, (2007) Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. *Genes Dev* **21**: 221-233.