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After the detailed data descriptions, we present results for ro-
bustness tests that use spatial (country) and temporal (5-y periods)
subsets of the East African data. We also present model mod-
ifications based on robustness testing of the effects of extreme
climate conditions, growing season time periods, interaction terms,
and alternative specifications of the dependent variable. All mod-
eling includes year and country fixed effects and grid cell clustered
SEs. The final set of models replaces country fixed effects with grid
cell fixed effects.

I. Detailed Data Description. We have chosen the study area and
time period for several reasons, including the degree to which our
findings may be generalized to sub-Saharan Africa, and we rec-
ognized the availability of the necessary social, political, and cli-
mate data. First, 1990 has the benefit of representing the beginning
of the post-Cold War contemporary world order. Material support
for proxy actors coming from the Soviet Union and the United
States profoundly influenced the political atmosphere, especially
conflict dynamics, in many sub-Saharan African states between
independence and 1990. Any findings gleaned from these earlier
geopolitical realities would need to be applied cautiously to the
current political climate, where such extensive external support is
now generally absent. Second, empirical data for sub-Saharan
Africa are notoriously undependable (or missing) during the earlier
years of independence beginning in the early 1960s. By focusing on
the period 1990–2009, we have access to more reliable data for
social and political controls (e.g., governance type, socioeconomic
status, and spatially disaggregated population data). Furthermore,
the media-reported conflict events that we use have had more
consistent and thorough coverage in the last two decades than
during previous time periods. Third, the regions within the study
area have exhibited a range of experiences with war and political
violence, ranging from Tanzania (relatively calm) to northern
Uganda (far more unstable). This wide representation of classi-
fications of instability means that our study applies not only to
already war-torn areas (a criticism of more classical work in the
environmental security literature). Fourth, with regard to physical
geography, our study area includes a wide range of climatic and
meteorological zones. Variation for these underlying conditions
allows us to analyze semiarid regions, which have been the focus
of much previous work, but also extend to districts with other
ecological characteristics (mountainous areas, rainforest, etc.).
Fifth, we also have a relatively high degree of geographic variation
with respect to control variables (e.g., population, socioeconomic
status, and regime type).
Table S1 presents summary statistics for all of the variables

used in the modeling.
a. Conflict data. The Armed Conflict Location and Event Dataset
project (ACLED) codes media-reported conflict data (1). The
existing database covers the period from 1997 to 2009 for most
African countries, and we extended it back to 1990 for our set of
nine East African states and bordering countries (Fig. S1). Much
of the existing research on climate–conflict relationships relies on
country-level data (2); however, their use is problematic, because
conflict processes are typically unevenly distributed across the
provinces or regions of a country. An especially egregious as-
sumption of intracountry regional parity in violence yields as-
signment to large countries (e.g., Tanzania or Ethiopia) of a single
binary measure of war or peace for each time period under study.
The ACLED data are georeferenced with latitude and longitude
coordinates, allowing for analysis of localized conflict within

a country’s borders. Compared with other datasets with high battle
death thresholds, such as Correlates of War (threshold of 1,000
battle deaths/y) (3) or the Uppsala Conflict Data Program and
Peace Research Institute Oslo (UCDP/PRIO; threshold of 25
battle deaths/y), the criteria for including violence in the ACLED
data are relaxed (4). The number of deaths or amount of property
damage associated with violence was not recorded in ACLED
because of unreliable data reporting in news outlets. Furthermore,
setting a fixed death threshold often does not make sense, because
conflict emerging in the face of ecological stress might include
small-scale skirmishes resulting in few deaths or injuries. The
Correlates of War and UCDP/PRIO data record conflict only
where it takes place between the government of an internationally
recognized state and a cohesive rebel group. For our purposes, we
identify and code violence that is not perpetrated by organized
rebels or government forces; conflict often takes place between
two nonstate actors, such as communal groups. Another data
collection project, the Social Conflict in Africa Database, rejects
a government–rebel and battle–threshold definition of conflict and
insecurity but includes only conflict events that are more social or
institutional in character; thus, it underreports the kind of violence
that could result from ecological stress (5).
For our study area and time period, the raw data include 16,359

events. By type, the numbers of events are battle–government
regains territory (359), battle–no change of territory (7,998), bat-
tle–rebel control of territory (550), riots/protests (1,359), and vi-
olence against civilians (6,093). Data are gathered from online
sources, such as Lexis-Nexis and Factiva, as well as other sources,
such as African Contemporary Record and African Research
Bulletin. The precise date and location of every conflict event are
recorded as well as the actors involved in the event and the type of
conflict (battle, riots, etc.) that occurred. Both the temporal and
spatial dimensions of the data have precision codes that indicate
levels of (un)certainty. An exact location (e.g., town, village, or
city) is coded as geoprecision level 1, a locality level estimate (e.g.,
a relatively fine resolution administrative unit such as district) is
level 2, and a larger administrative unit (e.g., province) is level 3.
Events geolocated at geoprecision level 3 are excluded from our
analysis. For temporal precision, the exact date is coded as one,
uncertainty within 1 wk is coded as two, and monthly precision is
coded as three. We tested the model on data for one event type
subset (the combined riots/protests and violence against civilians
data) but with no noteworthy change on the core findings (see
robustness checks below). Events taking place over 2 or more
d are coded as individual consecutive entries rather than a date
range, which is the method used by other projects.
Fig. S2 illustrates the distribution of violence over time and by

type for each country in the study area. Certain spikes are evident,
such as the violence that took place in Somalia during the last
several years, from 2000 to 2004 in Burundi, the Ethiopia–Eritrea
border wars in 1998–2001, and Lord’s Resistance Army-related
violence in northern Uganda. The large spike in Kenya reflects
postelection violence, which was well-reported in the media. Al-
though the spike in the spring of 1994 in Rwanda reflects the
country’s genocide, the number of events is not proportional to
the enormous casualties (over 800,000), because the huge scale of
the killings was not reported as clearly defined and discrete events.
b. Climate data. Precipitation.We use the 6-mo standard precipitation
index (SPI6) to compare the most recent 6-mo precipitation record
with the long-term distribution for the same season. The SPI
for a given month and year depends on the chosen time scale. For
example, the 6-mo measure, SPI6, compares the precipitation for
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the past 6 mo with the average for the same interval over the years
of record. Thus, SPI6 for June of 1990 compares the precipitation
for January through June of 1990 with the historical average since
1949 for those same 6 mo.
Deviation in rainfall is one of the primary observable effects of

climate change and variability, and most studies on the possible
relationship of conflict to climate have used precipitation directly
or indirectly in the analysis (6–9). Our precipitation and tem-
perature data (1949–2009) are aggregated from the original
University of East Anglia Climate Research Unit monthly 0.5° ×
0.5°-grids Climate Research Unit database (10) to our study unit
of analysis (1° × 1° grids) using local area averaging, which ac-
counts for the fractional contributions of the high-resolution grid
cells to each low-resolution grid cell.
We compared current precipitation to the long-term pre-

cipitation distribution parameterized using an incomplete γ-dis-
tribution (11). The current precipitation value is then converted to
the standard normal distribution to aid interpretation between
different climate zones. The SPI is the universal meteorological
drought index recommended to the World Meteorological Orga-
nization by the Interregional Workshop on Indices and Early
Warning Systems for drought (12). Although the Palmer Drought
Severity Index is commonly used in the United States, it performs
poorly in semiarid regions and regions with complex terrain, such
as East Africa (13). The 6-mo SPI was chosen for this study, be-
cause it indicates medium-term trends in precipitation and pro-
vides information on the time scale of the growing season. It may
also be related to anomalous stream flows and reservoir levels.
A drought period is defined when the SPI is negative and

reaches a threshold value of −1.0 or less, whereas wet periods are
defined for SPI ≥ 1.0. The SPI values are typically grouped into
seven categories: ≥2.00 as extremely wet, 1.50–1.99 as severely
wet, 1.00–1.49 as moderately wet, −0.99 to 0.99 as near normal,
−1.00 to −1.49 as moderately dry, −1.50 to −1.99 as severely dry,
and ≤−2.00 as extremely dry. The range and distribution of our
SPI6 can be seen in the spline plots in Fig. 1A. Fig. S3 shows the
monthly precipitation anomaly trends by country. The limited
variability for Somalia (also visible in Fig. S5F) reflects the
poorer data quality found in this area, especially during the last
one-half of our study period; 5-y counts by grid cell of unusually
dry months (SPI6 ≤ −1) are shown in Fig. S4A. There are rel-
atively few dry months compared with the number of hot months
during our study period (Fig. S4B), a phenomenon also visible in
the SPI6 density distributions (Fig. 1). The first decade had
substantially more dry periods than the succeeding 2000–2009
period.

Temperature.We use a 6-mo measure of temperature to quantify
anomalies from the long-term climate record, because temperature
trends have also been linked to civil war outbreaks (2), although
this finding has been challenged (14). Global (6) and region-spe-
cific studies in China (15) and Europe (16, 17) support claims that
rising and cooling temperatures will be associated with violence.
Temperature variability has important implications for agriculture,
and as such, this variable should be investigated with precipitation.
In studies with different emphases (positive vs. negative temper-
ature deviation), however, the mechanism remains the same:
colder temperatures in temperate climates result in crop failure
(18), and warmer deviations induce agricultural stress in warmer
climates (19).
We use a 6-mo temperature index (TI6) to compare the current

6-mo mean temperature record with the long-term (since 1949)
distribution for the same 6-mo period (see density plot of Fig. 1B
for distribution). The calculation is similar to the SPI6, but it uses
the standard normal distribution to parameterize the long-term
distribution. The index expresses the 6-mo anomaly departure as
an SD, enabling us to identify anomalous warm or cold periods.
Fig. S3 shows the monthly temperature anomaly trends by coun-
try; 5-y counts of unusually hot months (TI6 ≥ 1) are shown in Fig.

S4B, with the inland part of the East African study region expe-
riencing the largest deviations in the 2000–2009 period.
c. Control variables—measures, data, and sources. Space–time lag. At
international (20–23) and local levels (24–26), conflict exhibits
qualities that might be described as contagion, diffusion, de-
pendency, and clustering patterns. We account for these kinds of
effects by including a space–time lag of the dependent variable.
This space–time measure is constructed using a temporal lag of
1 mo and first-order spatial neighbors (queen contiguity) for the
grids. Including the temporal lag removes the endogeneity
problem of simultaneous spatial interaction that occurs with
a pure spatially lagged regression model.

Population.Within a country, conflict risk is associated with greater
population densities, numbers, and growth. We use the Gridded
Population of the World (GPW; v3) data from the Center for
International Earth Science Information Network and Socio-Eco-
nomic Data and Applications Center of Columbia University (27).
These data are available at multiple resolutions; we use the log-
transformed 1° product for our independent variable and the finer
resolution 2.5′ product to perform the population weighted cal-
culations for other variables. The data are available for 5-y periods,
and therefore, we estimate population values for intervening years
using linear interpolation.

Wellbeing (infant mortality rate). We choose the infant mortality
rate (IMR) as a summary measure of the overall quality of life in
East African states; this indicator has also been used in previous
studies of the climate–violence relationship (28). We use IMR
instead of gross domestic product per capita, because it serves as
a broader measure of social wellbeing. IMR is measured as the
average number of deaths during the first 1 y of life per 1,000 live
births. We assign IMR values to grid cells spanning country bor-
ders by weighting the IMR values based on GPW population data.
IMR data are from the Interagency Group for Child Mortality
Estimation, which is made up of representatives of the United
Nations Children’s Fund, World Health Organization, the World
Bank, and the United Nations Population Division (29). Estimates
for Somalia are static and high (at 108.3) between 1990 and 2008.
All IMR values are lagged 1 y.

Political rights. In authoritarian political climates, violent social
unrest may develop, because citizens have a limited ability to
express their interests. We use the yearly political rights score
from Freedom in the World 2011 (30) to measure the extent to
which a society is autocratic or democratic in character. For grid
cells spanning country borders, we assign the political rights
value from the country with the most GPW population in the
grid cell. It is generally accepted that regimes in transition be-
tween the two extreme categories experience the greatest risk of
conflict. For each country and year, the political rights values
range from one (free) to seven (not free). According to Freedom
House (30), “[t]he ratings process is based on a checklist of 10
political rights questions (grouped into three subcategories). To
answer the political rights questions, Freedom House considers
to what extent the system offers voters the opportunity to choose
freely from among candidates and to what extent the candidates
are chosen independently of the state.”

Presidential election.According to the work by Lindberg (31), only
one-quarter of African elections can be considered peaceful.
Violence may rise during campaigning or as a reaction to the
outcome of an election (32, 33). To isolate the influence of this
factor, we include a presidential election binary variable for every
country. The value extends 3 mo before and 3 mo after a country’s
presidential poll. For grid cells spanning country borders, we as-
sign the value from the country with the largest GPW population
in the grid cell.

Ethnic leadership.Clientelism, patronage politics, or private rule is
a known characteristic of political regimes in sub-Saharan Africa
(34, 35). Patron–client ties can result in the (usually ethnic) ex-
clusion of certain populations from government representation
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and services (36, 37). We control for the fact that certain terri-
tories within states may benefit from central government patron-
age ties by developing a geographic representation of political
leadership information from Archigos and Ethnologue spatial
boundaries. We use the Archigos data (38) that contain the details
of country leadership for 188 countries from 1875 to 2004. We
updated the Archigos data from the available dataset using the
existing coding protocol. A leader is defined as “the person that de
facto exercised power in a country” (39). We focus on the dates of
entry and exit from office. Also, the data outlining leadership of
the study area countries were joined with a shapefile representa-
tion of traditional ethnic homelands developed from Ethnologue
(40). For grid cells spanning an Ethnologue region, 20% or more
of the grid area must be covered by the ethnicity of the country
leader for it to assume the value of one.

Crop production index.There is a risk that social unrest will follow
rising food prices because of unfavorable popular opinion and the
fact that redressing food shortages adds pressure to strained
government budgets by reducing expenditures elsewhere. As
a surrogate for fluctuating food prices, we include a crop pro-
duction index from the Food and Agriculture Organization and
the World Bank (41). According to the World Bank, the “crop
production index shows agricultural production for each year
relative to the base period 1999–2001. It includes all crops except
fodder crops. Regional and income group aggregates for the
Food and Agriculture Organization’s production indexes are
calculated from the underlying values in international dollars,
normalized to the base period 1999–2001” (41). We calculated
percentage change from the previous year. Missing data for
Ethiopia and Eritrea for the years 1990–1992 were estimated
using a linear regression model based on crop production data
for nonmissing years. For grid cells spanning country borders, we
calculated a weighted average based on the respective GPW
population.

Capital city. The capital city is frequently an important site of
conflict (28), because it has symbolic importance (in terms of
claiming control of a country at war); dominance there shows
political control. It is also important to consider that lower-level
skirmishes (e.g., protests) tend to cluster in a capital city, because
it is the seat of important government offices. We use a binary
measurement of whether a grid cell includes the capital city of
a country. Asmara (Eritrea) was added starting in June of 1993
after that country gained independence.

Distance to border.Despite the efforts of state officials to secure
and police their borders, international boundaries between Af-
rican countries remain extremely porous. Because armed actors
can use neighboring territory as a sanctuary, borders represent
transmission points of conflict (26, 42). We calculate the mean
distance to the international border for each grid cell based on
a finer-resolution (10 km) distance grid. This finer-resolution
distance grid was generated in ArcGIS using the Albers equal-
area projection, and it was overlaid on the 1° grid to calculate
the mean distance to the border. The mean distances were
then converted to kilometers and transformed using the nat-
ural logarithm.

Distance to road.As routes for transporting people and supplies,
roads are often a key target for military activity (43) while also
serving as a key infrastructural element for central governments
to attempt to maintain control over their territories (44). Al-
though there are several options for mapping the road networks of
East Africa, we found the road network data from the Digital
Chart of the World (45) to be the most spatially consistent, and we
selected primary and secondary roads from these data for our
analysis. We use ArcGIS and the Albers equal-area projection to
calculate the distance to roads for a finer-resolution (1 km) set of
grids. These results are then overlaid on the 1° grid to calculate
mean distance. The mean distances were then converted to kilo-
meters and transformed using the natural logarithm.

Grassland. Pastoralist cattle raiding activity is a livelihood
strategy in parts of our study area, especially northern Kenya (46).
We account for the influence of this social dynamic by identifying
pastoralist areas with a measurement of grassland land use from
the History Database of the Global Environment database (47).
We calculate the percent grassland by aggregating the 5′-reso-
lution History Database of the Global Environment grassland
area to our 1°-grid cells. Because the data are available only for
1990, 2000, and 2005, we perform a linear interpolation for in-
termediate years and extrapolate to 2009 by a linear extension of
the 2000–2005 trends.

Vegetation condition index. We include a vegetation condition
index (VCI) to control for variations in vegetation health over
time. This weekly metric is derived from theNational Oceanic and
Atmospheric Administration’s Advanced Very High Resolution
Radiometer sensor (48). The vegetation condition index stand-
ardizes the normalized vegetation difference index (NDVI) to
a range of 0–100 (Eq. S1):

VCI ¼ 100× ðNDVI−NDVIminÞ=ðNDVImax −NDVIminÞ;
[S1]

where NDVImin and NDVImax values are the values per pixel
(49–51). This index enables comparison of NDVI values across
widely varying vegetation and precipitation regimens. These data
are available weekly for the duration of the study period at 16-
km pixel resolution from the National Oceanic and Atmospheric
Administration’s Center for Satellite Applications and Research.
We aggregate them to our month grid unit of analysis by cal-
culating the 4 wk mean value of all pixels within our 1° unit.
Missing months from October to December of 1994 were filled
using linear interpolation. We lag the VCI 6 mo with the ex-
pectation that any violence associated with changes in vegetation
would not take place immediately. Our expectation is that de-
clining vegetation health in the previous period is related to
a decrease in food availability for both animals and humans and
thus, increasing social and political stress.

Growing season. It is possible that the effect of temperature and
precipitation deviations is greatest during growing seasons. A
flood cannot destroy and a drought cannot desiccate crops that
have not been planted. To test this effect, we include a binary
variable for growing season derived from simulated climate data
at a 10-arc min spatial resolution (49). Growing seasons were
calculated based on average daily temperatures above 6 °C and
a ratio of actual to potential evapotranspiration exceeding 0.35.
These finer-resolution data were spatially aggregated to our 1°
grids by averaging the start dates and end dates for each grid cell
and then assigning the corresponding month based on the mid-
points of each month.

II. Robustness Tests. To test the robustness of the relationships
identified in the main regression model (Table 1, column f), we
repeated this analysis using both spatial and temporal subsets of
the data.
a. Country level. The first set of tests estimated model parameters
for each of the nine core study area countries (Table S2). Because
data for only one country at a time were included in the model, no
country-level fixed effects were included (yearly fixed effects were
retained). Additionally, for some of the countries, there was little
to no variation in some of the country-scale variables. For in-
stance, the ethnic leadership variable did not change during our
study period for Burundi, Rwanda, and Somalia; this variable was,
therefore, dropped from these country models. Similarly, Bur-
undi, Eritrea, Ethiopia, and Rwanda had either one or no
presidential elections between 1990 and 2009, and the election
buffer variable was omitted for these country models. The po-
litical rights metric was dropped because of high collinearity with
other explanatory variables for Burundi, Ethiopia, Somalia,
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Tanzania, and Uganda. Similarly, the distance to road variable
was dropped for Burundi because of collinearity.
The country-level estimates (Table S2) show wide fluctuations.

Many control variables lose statistical significance, and other
predictors shift from negative to positive significance between
country models. Because N, the number of grid months, changes
between the models, it is not possible to directly compare the
log-likelihood and Akaike information criterion (AIC) values.
To aid model comparison, we also report a pseudo-R2 value
(Nagelkerke R2) and the area under the curve (AUC) for pre-
dictive capability. Precipitation and temperature spline plots for
each country model show considerable differences between
countries. SPI6 coefficients for Burundi, Kenya, Rwanda, So-
malia, and Uganda are not statistically distinct from zero in-
fluence, although there is some evidence of a trend similar to the
main generalized additive model (GAM) result, especially for
wetter anomalies (Fig. S5). Results for Tanzania deviate from
the general trend, a function of a peaceful and unique historical
political trajectory compared with other countries. For temper-
ature anomalies (Fig. S6), the overall relationship (Fig. 1B) holds
up most consistently for Kenya, Ethiopia, and Somalia. For other
country models, the results are not statistically different from
zero, except for Burundi, where cooler than normal temper-
atures predict less conflict risk.
We experimented with dropping Somalia from the model,

because the quality of political, social, and climate data was
weaker for this country, which has seen ongoing civil wars during
the full extent of our study period. The general trend for both the
SPI6 and TI6 spline plots is similar to the main model (Fig. 1)
after excluding Somalia, with no substantive interpretation dif-
ferences. All coefficient estimates retain the same sign and level
of significance as in the final model (Table 1, column f).
b. Five-year periods. We subset the data into four 5-y periods, with
the caveat that the first 5-y period has only 4 y because of lagged
variables omitting 1990. Model estimates for these four periods
(Table S3, columns a–d) are slightly more stable than the in-
dividual country models, with fewer control variables oscillating
between negative and positive coefficients. This stability is also
evident in some of the precipitation and temperature spline
plots. For SPI6, the periods 1995–1999 and 2000–2004 exhibit
a similar pattern to the overall relationship (Fig. S7 A–D). The
first and last time periods are not consistent with the overall
model results, a result in line with the significance levels of
splines in the tabular results. For TI6, portions of the overall
relationship are evident in the results for all but the 1995–1999
5-y subset, with generally greater variability in the coefficient
estimates (Fig. S8 A–D). The most recent period, 2005–2009,
finds that cooler than normal temperatures are also associated
with an increased risk of conflict.
c. Extreme climate conditions. We also test the effect of combined
extreme weather conditions derived from our measures of pre-
cipitation and temperature. The hot and dry climate measure is
a binary variable defined as one for TI6 ≥ 1 and SPI6 ≤ −1;
otherwise, it is zero. Similarly, cold and wet grid months are
defined for values of TI6 ≤ −1 and SPI6 ≥ 1. Results for these
models (Table S3, columns e–f) show that hot and dry conditions
as well as deviations that are both cold and wet have no influence
on the risk of conflict. The addition of these measures has little
impact on the spline plots for precipitation and temperature
(Figs. S7 E and F and S8 E and F).
We also test themodel for a subset of the data based on El Niño

months. We define El Niño months using a 3-mo running mean
of sea surface temperatures in the Niño 3.4 region (5° N to 5° S,
120° to 170° W) and a threshold of 0.5 °C warmer than the base
period from 1971 to 2000 (52). This robustness test was inspired
by the work by Hsiang et al. (6), which finds that the probability
of conflict increases in El Niño years relative to La Niña years.
We find the estimates for this model (Table S3, column g) to be

roughly similar to the estimates of the overall model, with the
effect of precipitation anomalies on conflict largely unchanged,
although with a wider confidence interval for extreme pre-
cipitation anomalies (Fig. S7G). For temperature anomalies,
warmer temperatures still predict an elevated risk of conflict, but
for this El Niño subset, cooler temperatures also predict less
conflict (Fig. S8G).
Because the East African climate is sensitive to sea surface

temperature fluctuations in the Indian Ocean (52), we test how
these fluctuations may influence conflict in an additional ro-
bustness check by including the Dipole Mode Index (DMI) in
the model. The DMI is calculated by subtracting the sea surface
temperature in the East Indian Ocean from the sea surface
temperature in the West Indian Ocean for each month (53). The
value is then assigned to each of the grid cells, and we tested
models with the original DMI value and versions lagged for 3
and 4 mo. The 4-mo lag is most highly correlated with our SPI6
measure, and it also offered the strongest significant relationship
with violence. Table S3, column h shows the coefficient estimates
for this DMI robustness check; they are very similar to the main
GAM model (Table 1, column f). The spline plots (Figs. S7H
and S8H) are also similar to the spline plots in Fig. 1. From this
robustness check, we conclude that the spatially invariant Indian
Ocean sea surface temperature difference contributes little to
the prediction of violence.
d. Alternative dependent variables and logit models. For this set of
robustness tests, we use two different measures of localized
conflict: a subset of the ACLED data and the UCDP data that are
coded independently. We also vary the functional form of the
model by truncating predicted values above one and substituting
a logit model for the negative binomial model.
It is possible that weather variability and ecological stress will

have the effect of increasing social unrest, such as riots or protests,
and other types of informal conflict that do not include pitched
battles between communal groups or between rebels and gov-
ernment forces.We selected theACLEDevents that were coded as
riots/protests and violence against civilians and recalibrated the
model with only these events. The associations that we find between
SPI6 and TI6 and conflict with this subset of data are similar to the
full ACLED dataset (Table S4, column a). All controls retain the
same sign as the full model, but our IMR measure for wellbeing
becomes statistically significant. The greater effect of this variable
may reflect a closer connection between riots and violence against
civilians and wellbeing. The SPI6 spline coefficient estimates are
nearly identical to our main model, with some dry anomalies
predicting less violence (Fig. S9A). For this subset of data, like with
the full model, conflict risk is greatest during months with high TI6
deviations from the long-term average (Fig. S10A).
We also modify the functional form of our main model with the

full ACLED dataset (Table 1, column f) by truncating grid month
violent event values greater than one and estimating the coef-
ficients using a logistic generalized additive model. This approach
helps to dampen the effect of high-intensity violence that might
exert undue influence on the model estimates, although with the
attendant disadvantage of reducing variation in the dataset. Results
for this model (Table S4, column b) show general agreement with
the negative binomial version, with no sign changes for any vari-
ables, although the political rights and crop production variables
exhibit a stronger influence in predicting violence, whereas distance
to road showed a reduced effect. The spline coefficient estimates
for precipitation anomalies show a slightly reduced effect at
warmer temperatures (Fig. S9B) but little change for temperature
anomalies (Fig. S10B).
We also test the independently coded Georeferenced Event

Dataset (GED) from UCDP. These data differ from our ACLED
data primarily, because only records of deadly events of organized
violence that take place within bouts of violence that killed at least
25 people in 1 y are included (54). This stricter definition means
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that lower-intensity events, including conflict-related arsons,
forced evictions, looting, rioting, and possibly other violent hu-
man injuries (all coded by ACLED), are excluded in the UCDP
GED data. The UCDP GED data are currently available for all
of Africa from 1989 to 2010 (55). In aggregating these point data
to our grid month unit of analysis, we omitted events with tem-
poral measure that was imprecise (e.g., a yearly indicator) and
events with spatial precision that was only confirmed at the
country or region/section scale. Several events with invalid dates
were also omitted (e.g., February 31). For events coded as
spanning many weeks, we elected to use the start day of the event
rather than duplicating the event over the full date range, thus
avoiding excessive counting for events. (Some cumulative events
have a date range of longer than 1 mo, but this range usually
relates to an ongoing political conflict rather than individual
discrete instances of political violence that occurred on every day
of that 1 mo.) Our modified file of the UCDP events, thus,
yielded a total of 7,611 violent events for our nine-country study
area from 1990 to 2009. Aggregated grid month UCDP counts
are correlated positively with the ACLED data (Pearson’s co-
efficient of 0.557).
The model estimates for UCDP GED violence are shown in

Table S4, columns c and d.We use both the event countmodel and
estimate a binary logistic response.When comparing ACLEDwith
thismore conservative definition of violence, theVCI is statistically
significant, and the presidential election buffer is not significant in
the event count negative binomial model. For the logistic model,
capital city, political rights, and grassland are not statistically sig-
nificant, whereas the vegetation index is statistically significant in
the second model (not significant with the ACLED data). The
spline estimates for precipitation anomalies (Fig. S9C andD) show
few differences from our main model. Results for temperature
anomalies with the UCDP data are not statistically significant for
the logit model, but they are significant for the negative binomial
version (Fig. S10 C and D), with cooler temperatures predicting
more violence and warmer temperatures predicting less violence.
e. Alternate independent variables. For this set of robustness checks,
we consider variations of the independent variables. There is some
debate about which controls are appropriate for the type of conflict
analysis that we have conducted. Conceptually and empirically,
there is strong justification to include possible effects of sociopo-
litical (e.g., regime type) and geographic (e.g., nearby conflict)
realities. However, we test the effect of dropping all controls to
eliminate the possibility that some of our ecological and physical
geographical controls are associated with the key TI6 and SPI6
indicators (Table S4, column e). In doing so, both TI6 and SPI6
splines retain their statistical significance in this estimation, but the
predictive power or fit of the model is lower without controls
(AUC=0.850with controls andAUC=0.723without controls). In
dropping all controls, the climate anomaly spline estimates vary
little from our main model (Figs. S9E and S10E), supporting our
expectation that the climate metrics are exogenous.
The neighboring violence control is a strong predictor of

conflict and greatly increases the predictive power of our model.
Dropping the space–time lag from our analysis generates results
for both the TI6 and SPI6 indicators that are highly consistent
with our initial findings (Figs. S9F and S10F). One exception is
the reduced risk of conflict for the highest deviation dry periods.
Given the dependence of violence over space and time, we be-
lieve that it is important to retain the space–time lag variable in
our main model.

We also test for a relationship to the local growing season by
a binary indicator of growing season status (Table S4, column g).
These results show that growing season is not a statistically sig-
nificant predictor of violence, and its inclusion does not affect the
relationship of TI6 and SPI6 on conflict risk (Figs. S9G and S10G).
One explanation for the relationship between high temperature

deviations and more conflict is that underrepresented, repressed,
or politically excluded populations might suffer more under
conditions of social stress and climate variability. We estimate
four models, one for each of the following climate-related in-
teraction terms: SPI6 × ethnic leadership, SPI6 × political rights,
TI6 × ethnic leadership, and TI6 × political rights. None of these
terms was statistically significant in predicting violence (Table
S5, columns a–d). The climate variable spline plots for each
model generally exhibit negligible differences with this in-
teraction term included (Figs. S11 A–D and S12 A–D). The one
exception is the precipitation anomaly plot for SPI6 interacted
with political rights (Fig. S11B). For this model, the SPI6 and
SPI6 × political rights terms have high generalized variance in-
flation factors, indicating a collinearity problem that manifests
itself in the SPI6 spline plot. These results indicate that climate
effects on conflict are independent of regime type and ethnic
leadership as we have measured them.
To aid in coefficient interpretation, we also include a modified

version of the hot temperatures binary model (Table 1, column d).
In this modified model (Table S5, column g), we increase the TI6
binary threshold from 1 SD to 2 SDs. With this construction, we
use the simpler generalized linear model composition in place of
the more complex GAM model (Table 1, column f) to verify the
effects of very hot temperatures on conflict. This additional model
shows a very similar relative risk ratio for very hot grid months
(a 30.2% increase compared with 29.6%, which is reported in
Table 2). We also included the relative risk ratios for all coef-
ficients in this model to facilitate comparison of climate effects to
other factors. Presidential elections increase the risk of violence
by a similar 35.1%, and presence of a capital city within a grid cell
increases the risk of violence by a striking 511%. Note that the
relative risk ratios may be easily calculated for any of our other
negative binomial or logit models by exponentiating the reported
coefficient. Caution is advised in comparing the magnitude of the
coefficients and relative risk ratios directly; the input variable
distributions are not standardized, and the ranges vary (Table S1).
f. Grid fixed effects and ordinary least squares functional form.Although
we prefer country fixed effects for their ability to capture un-
measured institutional and governance variability at the country
scale, we include models with grid (and year) fixed effects with
and without control variables (Table S5, columns e and f). The
stability of the climate anomaly spline plots (Figs. S11 E and F
and S12 E and F) provides additional evidence that their effect
on conflict is not sensitive to grid-level time invariant factors and
that the climate variables are exogenous.
Because it is possible that thenegativebinomial functional form is

inconsistent with large numbers of fixed effects for our models (ref.
56, p. 280), we also estimate the model using ordinary least squares
(OLS). Table S6 mirrors the models of Table 1, except that it uses
grid fixed effects instead of country fixed effects and estimates co-
efficients using OLS. Figs. S11G and S12G show the spline co-
efficient plots that correspond to Table S6, column f. These plots
show that the effect of wet periods reducing conflict fades but that
the effect of warmer temperatures increasing conflict remains.
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Fig. S1. The distribution of ACLED violent events for 5-y periods in the nine countries of the study area. The devastating civil conflicts in Rwanda (early 1990s)
and Burundi (throughout the study period), the Ethiopia–Eritrea border war (1998–2000), the diffusion of violence into eastern Democratic Republic of Congo
(DRC) from Rwanda, the Lord’s Resistance Army war in northern Uganda and surroundings, the Ethiopian invasion of Somalia in mid-2006, the civil conflict in
Somalia involving the Al-Shabab militias, and the Kenyan electoral violence of early 2008 are easily discernible on the maps. Border areas adjoining the nine
countries of study (in Sudan, Zambia, DRC, Malawi, and Mozambique) are included in the analysis and have also seen violence.
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Fig. S2. Cumulative plots for ACLED monthly events by country.
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Fig. S3. Precipitation and temperature anomalies by country from 1990 to 2009.
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Fig. S5. Precipitation anomaly spline plots for country-level (A–H) robustness test subsets corresponding to Table S2, columns a–h.
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Fig. S6. Temperature anomaly spline plots for country-level (A–H) robustness test subsets corresponding to Table S2, columns a–h models.
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Fig. S7. Precipitation anomaly spline plots for 5-y periods (A–D), hot and dry (E), cold and wet (F), el Niño subset (G), and Indian Ocean DMI (H) corresponding to
Table S3 models.

O’Loughlin et al. www.pnas.org/cgi/content/short/1205130109 12 of 22

www.pnas.org/cgi/content/short/1205130109


-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

TI6
-4 -2 0 2 4

D
en

si
ty

0.
0 

   
   

  0
.5

-4 -2 0 2 4

Coefficient estimate
95% confidence interval

-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

D
en

si
ty

0.
0 

   
   

  0
.5

Coefficient estimate
95% confidence interval

TI6
-4 -2 0 2 4

-4 -2 0 2 4

-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

D
en

si
ty

0.
0 

   
   

  0
.5

Coefficient estimate
95% confidence interval

TI6
-4 -2 0 2 4

-4 -2 0 2 4

    Spline estimates for TI6, 2000-2004

-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

D
en

si
ty

0.
0 

   
   

  0
.5

Coefficient estimate
95% confidence interval

TI6
-4 -2 0 2 4

-4 -2 0 2 4

-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

D
en

si
ty

0.
0 

   
   

  0
.5

Coefficient estimate
95% confidence interval

TI6
-4 -2 0 2 4

-4 -2 0 2 4

     Spline estimates for TI6, hot & dry

-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

D
en

si
ty

0.
0 

   
   

  0
.5

Coefficient estimate
95% confidence interval

TI6
-4 -2 0 2 4

-4 -2 0 2 4

    Spline estimates for TI6, cold & wet

-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

D
en

si
ty

0.
0 

   
   

  0
.5

Coefficient estimate
95% confidence interval

TI6
-4 -2 0 2 4

-4 -2 0 2 4

     Spline estimates for TI6, El Niño subset

-2
.0

   
   

  -
1.

5 
   

   
 -1

.0
   

   
  -

0.
5 

   
   

 0
.0

   
   

   
 0

.5
   

   
   

1.
0

C
oe

ffi
ci

en
t e

st
im

at
e

D
en

si
ty

0.
0 

   
   

  0
.5

Coefficient estimate
95% confidence interval

TI6
-4 -2 0 2 4

-4 -2 0 2 4

     Spline estimates for TI6, Indian O. DMI

     Spline estimates for TI6, 1991-1994      Spline estimates for TI6, 1995-1999      Spline estimates for TI6, 2005-2009A B C D

E F G H

Fig. S8. Temperature anomaly spline plots for 5-y periods (A–D), hot and dry (E), cold and wet (F), El Niño subset (G), and Indian Ocean DMI (H) corresponding
to Table S3 models.
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Fig. S9. Precipitation anomaly spline plots for alternate dependent variables and logit models (A–D) and alternate independent variables (E–G) corresponding
to Table S4 models.
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Fig. S10. Temperature anomaly spline plots for alternate dependent variables and logit models (A–D) and alternate independent variables (E–G) corre-
sponding to Table S4 models.
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Fig. S11. Precipitation anomaly spline plots for interaction variables (A–D) and grid fixed effects (E–G) corresponding to models in Table S5, columns a–f, and
Table S6, column f.
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Fig. S12. Temperature anomaly spline plots for interaction variables (A–D) and grid fixed effects (E–G) corresponding to models in Table S5, columns a–f, and
Table S6, column f.

Table S1. Summary statistics for dependent and independent variables

Minimum Median Mean Maximum SD

ACLED violent events 0.000 0.000 0.175 53.000 1.275
UCDP violent events 0.000 0.000 0.080 43.000 0.746
Precipitation (SPI6) −4.718 0.152 0.069 5.294 0.911
Temperature (TI6) −2.909 0.670 0.710 3.619 0.823
Ethnic leadership 0.000 0.000 0.074 1.000 0.262
Distance to border (ln) 2.477 4.353 4.291 6.037 0.890
Capital city grid cell 0.000 0.000 0.022 1.000 0.147
Population (ln) 7.621 12.179 12.331 15.564 1.284
Wellbeing (IMR lag) 40.780 94.003 95.266 158.000 19.594
Political rights (lag) 2.000 6.000 5.492 7.000 1.234
Presidential election buffer 0.000 0.000 0.060 1.000 0.237
Grassland (%) 0.798 31.095 37.302 97.556 21.821
Distance to road (ln) 0.850 2.311 2.431 5.208 0.824
Crop production index (pct. Δ) −35.484 1.499 3.257 104.000 12.816
VCI (lag) 0.000 48.840 48.461 100.000 21.680
Indian Ocean DMI (lag) −2.735 −0.053 0.020 3.548 1.056
Growing season 0.000 0.000 0.403 1.000 0.490
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