Supporting Information

Wang et al. 10.1073/pnas.1210479109

SI Materials and Methods

For in situ hybridization, $Atf5^{+/+}$ and $Atf5^{+/-}$ embryonic stage 18.5 embryos or heads from postnatal day $0 Atf5^{+/+}$, $Atf5^{+/-}$, and $Atf5^{-/-}$ mice were harvested, fixed in 4% (wt/vol) paraformaldehyde at 4 °C overnight, infused with 25% (wt/

 Wang SZ, et al. (2006) An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. *Development* 133(17):3389–3398. vol) sucrose in 1× PBS overnight, embedded in optimal cutting temperature (OCT) compound, and cryosectioned at 18 μ m. Digoxigenin-labeled riboprobes against *Atf5* and *LacZ* were used to perform in situ hybridization, as described previously (1).

Fig. S1. Validation of $Atf5^{-/-}$ mice. (A) (*Left*) Schematic diagrams of the wild-type (WT) and knockout (KO) Atf5 alleles. To generate the KO allele, a LacZ-Neo cassette was inserted in frame and replaced most of exon 1 (E1) and all of exons 2 and 3 (E2 and E3, respectively). The gene replacement results in an increase in length of a KpnI restriction fragment that encompasses the Atf5 locus from 5.7 kb (WT allele) to 9.3 kb (KO allele). K represents the KpnI sites; ATG represents the translation start site; bZIP denotes the basic region leucine zipper domain. (*Right*) Southern blot analysis of the Atf5 locus in $Atf5^{+/-}$, and $Atf5^{-/-}$ mice. (B) PCR genotyping of a litter of $Atf5^{+/-}$, $Atf5^{+/-}$, and $Atf5^{-/-}$ mice from an $Atf5^{+/-}$ intercross. (C) RT-PCR analysis of Atf5 expression in mouse embryonic fibroblasts (MEFs) (*Left*) and liver (*Right*) of $Atf5^{+/+}$, $Atf5^{+/-}$, and $Atf5^{-/-}$ mice. Gapdh was monitored as a control. (D) qRT-PCR analysis of $Atf5^{+/+}$ mice, *which* was set to 1. **P* < 0.05.

Fig. 52. Further characterization of *Atf5* expression by in situ hybridization analysis and β -gal immunoblot analysis and activity assays. (*A*) Immunoblot analysis monitoring β -gal levels in *Atf5^{+/+}*, *Atf5^{+/-}*, and *Atf5^{-/-}* mice. Actin was monitored as a loading control. (*B*) In situ hybridization monitoring *Atf5* and *LacZ* expression on a sagittal section of *Atf5^{+/+}* and *Atf5^{+/-}* whole embryonic stage 18.5 embryos. *Upper*, magnification 0.8x; *Lower*, magnification 5×. *Inset* highlights the region that is shown in the *Lower* image. Arrowheads denote positive staining. (C) In situ hybridization monitoring *Atf5* and *LacZ* expression in the olfactory epithelium (OE) of postnatal day 0 (PO) *Atf5^{+/+}*, *Atf5^{+/-}*, and *Atf5^{-/-}* mice. Magnification 100×. (*D*) In situ hybridization monitoring *Atf5* expression in the vomeronasal organ (VNO) of a PO *Atf5^{+/+}* mouse. Magnification 100×. (*E*) Whole-mount β -gal activity assay on a sagittal section of the nose (*Upper*) and a bottom view of the brain (*Lower*) of a 10-mo-old *Atf5^{+/-}* mouse. Sept, septum; Turb, turbinates; SO, septal organ; OB, olfactory bulb. Magnification 8x.

Fig. S3. Immunofluorescence monitoring β-gal and TUJ1, GAP43, and/or OMP staining in the olfactory epithelium (OE) and olfactory bulb (OB). (A) Immunofluorescence monitoring β-gal, TUJ1, and OMP staining in the OE of a postnatal day 0 (P0) $Atf5^{+/-}$ pup. (*Right*) Merged images. Magnification 5×. The results indicate that Atf5 is expressed in both immature (TUJ1+) and mature (OMP+) olfactory sensory neurons (OSNs). (B) Immunofluorescence monitoring β-gal and TUJ1 staining in the OE of a P0 $Atf5^{+/-}$ pup. Merged images are shown in the absence and presence of DAPI. Arrowheads indicate the apical and basal layers of the OE. Magnification 40×. Dots indicate TUJ1+ β-gal+ cells; asterisks indicate TUJ1+ β-gal- cells. The results indicate that many TUJ1+ cells, particularly those located near the basal layer, are β-gal- (asterisks). Significantly, however, some β-gal+ cells also stained strongly for TUJ1 (dots). (C) Immunofluorescence monitoring β-gal and OMP staining in the OE of a P0 $Atf5^{+/-}$ pup. Merged images are shown in the absence and presence of DAPI. Arrowheads indicate that all OMP+ neurons are also β-gal+ (dots) and that some β-gal+ cells are OMP- (asterisks). (D) Immunofluorescence monitoring β-gal and OMP staining in the OE of a 2.5-mo-old $Atf5^{+/-}$ mouse. Merged images are shown in the absence and presence of DAPI. Arrowheads indicate that all OMP+ neurons are also β-gal+ (dots) and that some β-gal+ cells are OMP- (asterisks). (D) Immunofluorescence monitoring β-gal and OMP staining in the OE of a 2.5-mo-old $Atf5^{+/-}$ mouse. Merged images are shown in the absence and presence of DAPI. Arrowheads indicate the apical and basal layers of the OE. Magnification 5×; Lower, magnification 20×. (Upper) The white dashed box indicates the region that is shown in the Lower image. The OMP+, β-gal+ glomerular structures observed in the 20× magnification indicate, as expected, that the β-gal staining in the outer, glomerular layer of the OB is from axons of mature OSNs.

Fig. S4. Immunofluorescence monitoring β -gal and GAP43 staining in the olfactory epithelium (OE) of postnatal day 0 $Atf5^{+/-}$ and $Atf5^{-/-}$ mice. Merged images are shown in the absence and presence of DAPI. Arrowheads indicate the apical and basal layers of the OE. Magnification 40×. The results are consistent with those obtained by TUJ1 staining and show that Atf5 is expressed in some but not all immature olfactory sensory neurons.

Fig. S5. Identification of genes with decreased expression in *Atf5^{-/-}* olfactory epithelium (OE). Heat map displaying the 274 genes whose expression level was significantly decreased in *Atf5^{-/-}* OE (green) relative to that in *Atf5^{+/+}* OE (red). In addition, there were seven genes whose expression level was increased in *Atf5^{-/-}* OE relative to that in *Atf5^{+/+}* OE (red). In addition, there were seven genes whose expression level was increased in *Atf5^{-/-}* OE relative to that in *Atf5^{+/+}* OE (red).

Fig. S6. Similarity in olfactory sensory neuron (OSN)-specific gene expression and OMP and cleaved caspase 3 (CASP3) staining between $Atf5^{+/+}$ and $Atf5^{+/-}$ mice. (A) qRT-PCR analysis monitoring gene expression in olfactory epithelium (OE) of postnatal day 0 (P0) $Atf5^{+/+}$ and $Atf5^{+/-}$ mice. The results were normalized to the expression level in $Atf5^{+/+}$ mice, which was set to 1. Red arrowheads indicate the relative expression of each gene in $Atf5^{-/-}$ mice, as shown in Fig. 4B. P, progenitor markers; I, immature OSN markers. *P < 0.05. The results show that expression of OSN-specific genes was similar in $Atf5^{+/-}$ mice. (B) Immunofluorescence monitoring OMP staining in the OE of P0 $Atf5^{+/+}$, $Atf5^{+/-}$, and $Atf5^{-/-}$ mice. (Right) DAPI images. Magnification 20x. (C) Immunofluorescence monitoring cleaved CASP3 staining in the OE of P0 $Atf5^{+/-}$, and $Atf5^{-/-}$ mice. Merged images are shown in the absence and presence of DAPI. Magnification 20x.

Fig. S7. Confirmation of ectopic Atf5 expression. (A) Immunoblot analysis monitoring Flag-ATF5 (*Left*) and myc-ATF5 (*Right*) levels in rat Odora cells transfected with empty vector and Flag-ATF5 or myc-ATF5. Tubulin was monitored as a loading control. (B) qRT-PCR analysis monitoring expression of Atf5 in mouse neural stem cells (NSCs) transduced with a retrovirus that expresses ATF5 or empty virus control. Fold increase in Atf5 expression is given relative to the empty virus control, which was set at a value of 1. *P < 0.05.

Fig. S8. Enlarged versions of images shown in Fig. 2*A* and Fig. 3*D*. (*A*) From Fig. 2*A*. Whole-mount β -gal activity assay on two different sagittal head sections of a P30 $Atf5^{+/-}$ mouse. GG, Grueneberg ganglion; OB, olfactory bulb; Sept, septum; SO, septal organ; Turb, turbinates; VNO, vomeronasal organ. Magnification 5×. (*B*) From Fig. 3*D*. Immunofluorescence monitoring β -gal, TUJ1, and OMP staining in coronal sections of the OB of a postnatal day 0 $Atf5^{+/-}$ pup. (*Right*) Merged images. Magnification 50×.

Other Supporting Information Files

В

Dataset S1 (XLS)

AS PNAS