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SI Materials and Methods
Baculovirus DR52c–Peptide Libraries. The baculovirus libraries de-
scribed in Fig. 1 were produced by direct cloning of PCR fragments
into baculovirus DNA (1, 2). The baculovirus DNA was digested
with homing nucleases SceI and CeuI, leaving 3′ overhanging
ends. The PCR fragment encoding the randomized peptide li-
brary was digested with homing nucleases BstXI and purified.
The mixture of digested baculovirus DNA and the digested PCR
fragment was ligated with a high concentration of T4 ligase (105

units/mL) for 1 h at room temperature. The ligation mixture was
heated, inactivated, and directly used for transfecting SF9 insect
cells using the standard calcium phosphate method. The trans-
fected SF9 insect cells were then sorted by Alexa Fluor647-la-
beled ANi2.3 T-cell receptor (TCR) multimers 3 d later.

T Cells and T-Cell Assays. The activation of ANi2.3 T-cell trans-
fectoma (3, 4) or its mutational variants was assayed by IL-2 se-
cretion as previously described (5).Mutant variants of ANi2.3 were
made by retroviral transduction of the TCR– T-cell hybridoma
5KC-9c6 (6, 7). Three types of antigen-presenting cells were used:
(i) ICAM/B7.1+ SF9 insect cells (1) infected with baculovirus en-
coding a surface-expressed version of DR52c bearing a linked
DR52c binding peptide (2); (ii) DR52c+ HO301 lymphoblastoid B
cells (8); and (iii) DT40 chicken leukemia B cells (9) transduced
with retroviruses encoding DR52c linked to the pHIR mimotope.

TCR Mutational Analysis. Wild-type and the indicated alanine-
substitution mutants of ANi2.3 Vα and Vβ were cloned in murine
stem cell virus (MSCV)-based retroviral plasmids with an internal
ribosomal entry site plus green fluorescent protein as a reporter.
TCR chains were expressed in TCR-deficient human CD4-
transduced hybridoma cell line 5KC-9c6 (6) by retroviral trans-
duction as described previously (10, 11). Cells expressing equiv-
alent levels of TCR and CD4 were isolated by flow cytometry cell
sorting. Ten thousand cells of each mutant transfectoma were
used for the T-cell assays.

Protein Expression and Purification. DNA encoding DR52c (ex-
tracellular domains) and DR52c β-chain covalently attached to
pHIR or pWIR was cloned into a single baculovirus as previously
described (12). The soluble DR52c–pHIR and DR52c–pWIR
complexes in the supernatants of virus-infected HighFive insect
cells were purified by immunoaffinity chromatography using the
anti-DR mAb LB-3.1, followed by size-exclusion chromatogra-
phy using Superdex 200. For Biacore surface plasmon resonance
experiments, V regions of the ANi2.3 TCR were fused to mouse
C regions and expressed in baculoviruses as previously described
(13–15). For crystallography, the Vα and Vβ portions of the
ANi2.3 TCR were fused by GS linker (Vα-linker-Vβ) in a mod-
ified (Fig. S1) version of the Mopac16 vector (16). The soluble
single-chain ANi2.3 TCR was expressed in the periplasmic space
of the Rosetta strain of Escherichia coli and purified by an Ni-
NTA affinity column and a Superdex 200 gel-filtration column.

Crystal Production and Data Collection.DR52c–pHIR and DR52c–
pWIR were crystallized by mixing 0.5 μL of each protein solution
at a concentration of 15 mg/mL with an equal volume of reser-
voir solution. DR52c–pHIR was crystallized in 16% PEG 4000,
100 mM Tris·HCl (pH 8.0) with space group C2. DR52c–pWIR
was crystallized in 17% PEG 4000, 100 mM HEPES (pH 7.5),
10% isopropanol with space group P21. An equimolar mixture of
ANi2.3 TCR and DR52c–pHIR was crystallized by mixing 0.5 μL
of complex solution at a concentration of 15 mg/mL with an
equal volume of reservoir solution. The complex was crystallized
in 12% PEG 3350, 100 mM ammonium tartrate (pH 7.0) in
space group P63.

Data Collection. X-ray diffraction data were collected at the Ad-
vanced Light Source on beamline 8.2.2 under liquid-nitrogen
cryoconditions at 100 K. All crystals were flash-cooled in liquid
nitrogen after a flash-soak in a cryoprotection solution consisting
of the reservoir solution with an additional concentration of
glycerol (18–25%). The data were indexed, integrated, scaled,
and merged using HKL2000 (17).

Structure Determination. The structures of DR52c–pHIR and
DR52c–pWIR were determined by molecular replacement using
the CCP4 program AMoRe (18) with the DR52c–pTu structure
[Protein Data Bank (PDB) ID code 3C5J] without a bound
peptide as the search model. In the initial Fo − Fc maps, we could
see a clear positive density within the peptide binding groove of
DR52c. Peptides were modeled into this positive density. Models
were manually adjusted using the program O (19).
The structures of the ANi2.3–DR52c–pHIR complex were

determined by molecular replacement using Phaser (20) with the
Vα of HA1.7 TCR (PDB ID code 1FYT), Vβ of JM22 TCR
(PDB ID code 1OGA), and DR52c–pTu (PDB ID code 3C5J) as
search models, respectively. After an initial round of rigid-body
refinement, the models were inspected and manually fitted with
the program Coot (http://lmb.bioch.ox.ac.uk/coot). The models
were then subjected to several rounds of alternating simulated
annealing/positional refinement in PHENIX (21) followed by B-
factor refinement in PHENIX. Model building was performed
using the program Coot from the CCP4 suite. Simulated an-
nealing omit maps were routinely used to remove the model bias.
All models have good stereochemistry, as determined by the
program PROCHECK (22).

Structure Analysis.Buried molecular surface areas were calculated
using GRASP (23). NCONT in CCP4 (18) was used to analyze
the contacts between the TCRs and their ligands. Atoms within
4.5 Å of each other were considered part of the interface.
Contacts involving potential electron donors and acceptors (O or
N) within 3.5 Å were considered potential hydrogen bonds or
salt bridges. Other contacts were considered van der Waals
contacts. Molecular superimpositions and figures were created
with PyMOL (Schrödinger) and Swiss-PDB Viewer (24).
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Modified portion of Mopac54:  
       XbaI              NdeI                                                 SfiI   NcoI     
      \/                 \/                                                      \/  \/       
CGAATTTCTAGAGAAGGAGATATACATATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCGGCCCAGCCGGCCATGGCG 
                            M  K  Y  L  L  P  T  A  A  A  G  L  L  L  L  A  A  Q  P  A  M  A  
                           <————————————————————————Pel Signal Peptide——————————————————————> 

  EcoRI                                                     NheI       Bgl2                   
  \/                                                        \/         \/                     
TAGAATTCTGGGGGTGGTTCTGGTGGCGGCGGTAGTGGCGGTGGTGGGAGCGGCGGTGGCGCTAGCTGAGGAGATCTCGACCATCACCATCAC 
    N  S  G  G  G  S  G  G  G  G  S  G  G  G  G  S  G  G  G  A  S        D  L  D  H  H  H  H  
 Vα <————————————————————————————————————————————————————————————>  Vβ  <———————><————Six His 

               HinD3                                
               \/                                   
CATCACTGATATCGCAAGCTTTAAGGAGATATATATATGAAAAAGTGGTTA 
 H  H  *                             M  K  K  W  L  
—————>                              <—————Skp——     

ANi2.3 scFV in modified Mopac16 

      SfiI   NcoI                                                                             
         \/  \/                                                                               
GCGGCCCAGCCGGCCATGGCACAGTCAGTGACCCAGCCTGACATCCACATCACTGTCTCTGAAGGAGCCTCACTGGAGTTGAGATGTAACTAT 
 A  A  Q  P  A  M  A  Q  S  V  T  Q  P  D  I  H  I  T  V  S  E  G  A  S  L  E  L  R  C  N  Y  
—Pel Signal Peptide—><————— hVα 1.4 Variable                                                  

TCCTATGGGGCAACACCTTATCTCTTCTGGTATGTCCAGTCCCCCGGCCAAGGCCTCCAGCTGCTCCTGAAGTACTTTTCAGGAGACACTCTG 
 S  Y  G  A  T  P  Y  L  F  W  Y  V  Q  S  P  G  Q  G  L  Q  L  L  L  K  Y  F  S  G  D  T  L  

GTTCAAGGCATTAAAGGCTTTGAGGCTGAATTTAAGAGGAGTCAATCTTCCTTCAATCTGAGGAAACCCTCTGTGCATTGGAGTGATGCTGCT 
 V  Q  G  I  K  G  F  E  A  E  F  K  R  S  Q  S  S  F  N  L  R  K  P  S  V  H  W  S  D  A  A  

                                                                                EcoRI         
                                                                                \/            
GAGTACTTCTGTGCTGTGGGTGCGTCTGGCAACACAGGCAAACTAATCTTTGGGCAAGGGACAACTTTACAAGTAAAACCGAATTCTGGGGGT 
 E  Y  F  C  A  V  G  A  S  G  N  T  G  K  L  I  F  G  Q  G  T  T  L  Q  V  K  P  N  S  G  G  
 hVα 1.4 Variable———><—N——><————————————————————————————————hJα37———————————————>   <———————— 

                                             NheI                                             
                                             \/                                               
GGTTCTGGTGGCGGCGGTAGTGGCGGTGGTGGGAGCGGCGGTGGCGCTAGCGGAATCACTCAGTCCCCAAAGTACCTGTTCAGAAAGGAAGGA 
 G  S  G  G  G  G  S  G  G  G  G  S  G  G  G  A  S  G  I  T  Q  S  P  K  Y  L  F  R  K  E  G  
————————————————————Linker————————————————————————><————hVβ17  Variable                       

CAGAATGTGACCCTGAGTTGTGAACAGAATTTGAACCACGATGCCATGTACTGGTACCGACAGGACCCAGGGCAAGGGCTGAGATTGATCTAC 
 Q  N  V  T  L  S  C  E  Q  N  L  N  H  D  A  M  Y  W  Y  R  Q  D  P  G  Q  G  L  R  L  I  Y  

TACTCACAGATAGTAAATGACTTTCAGAAAGGAGATATAGCTGAAGGGTACAGCGTCTCTCGGGAGAAGAAGGAATCCTTTCCTCTCACTGTG 
 Y  S  Q  I  V  N  D  F  Q  K  G  D  I  A  E  G  Y  S  V  S  R  E  K  K  E  S  F  P  L  T  V  

ACATCGGCCCAAAAGAACCCGACAGCTTTCTATCTCTGTGCCAGTAGTTTAAGGGACGGATACACCGGGGAGCTGTTTTTTGGAGAAGGCTCT 
 T  S  A  Q  K  N  P  T  A  F  Y  L  C  A  S  S  L  R  D  G  Y  T  G  E  L  F  F  G  E  G  S  
                                       hVβ17   ———>N<Dβ2><N—><————————————————————hJβ2.2————— 

                  Bgl2                                HinD3                             
                 \/                                   \/                                
AGGCTGACCGTACTAGAAGATCTCGACCATCACCATCACCATCACTGATATCGCAAGCTTTAAGGAGATATATATATGAAAAAGTGG 
 R  L  T  V  L  E  D  L  D  H  H  H  H  H  H  *                             M  K  K  W  
—————————————><—mCβ————>   <—————6His———————>                              <——Skp—————— 

Fig. S1. Modification of pMopac54 and cloning of the ANi2.3 TCR as a single-chain Fv (scFV). The original Mopac54 plasmid was modified to introduce cloning
sites for TCR Vα (NcoI and EcoRI) before and Vβ (NheI and Bgl2) after the GS linker. Also, the sequence encoding human Cκ and residual E. coli phage sequence
(∼500 bp) was removed between the scFV and Skp gene, the original 12-His tag was reduced to a 6-His tag, and an out-of-frame ATG in the Pel signal peptide
was removed by changing codon 3 from TGC to TAC. DNA fragments encoding the Vα and Vβ domains of ANi2.3 flanked by the appropriate restrictions sites
were synthesized by PCR and cloned into the modified vector.
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Fig. S2. Electron density at the interface among DR52c, TCR Vβ CDR3, and pHIR. A section of the ANi2.3 TCR Vβ CDR3 loop, the alpha helix of DR52c β1
domain, and the C-terminal end of the pHIR mimotope are shown with electron density based on the final model (2Fo-Fc, 1.5σ). The side chains of the critical
TCR βCDR3β D95, DR52c β1 Q64, and pHIR 7K and 8R are labeled.
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