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Periodic Experiments. Start Toes experiment. Subjects moved 20 body
parts consecutively while lying with their eyes closed and blind-
folded inside the functional MRI scanner. The movement se-
quence followed the spatial order from toes to tongue found by
Penfield in the primary motor cortex homunculus. It included
bilateral/axial movements of the following body parts: toes
(flexion/extension), feet (flexion/extension), thighs (contraction),
buttocks (contraction), stomach (contraction), upper arm (con-
traction), elbow (flexion/extension), wrist (flexion/extension), fist
(contraction), little finger (flexion/extension), ring finger (flexion/
extension), middle finger (flexion/extension), index finger (flex-
ion/extension), thumb (flexion/extension), forehead (contrac-
tion), nose (contraction), eyelids (contraction), lips (contraction),
jaw (flexion/extension), and tongue (a side to side movement with
closed mouth). The subjects were instructed to execute the
movements on hearing an auditory cue, which was the spoken
name of the body part followed by three metronome beeps at 1-s
intervals, during which time the subject moved. Overall, each
body part was moved three times within a period of 3 s; the next
body part was announced during the last 1 s. The whole movement
cycle lasted 60 s and was followed by a rest period of 12 s. Eight
cycles of movement and rest were performed, resulting in a
stimulus frequency of 0.0138 Hz. The subjects were trained for
approximately 1 h before entering the scanner. During training,
their movements were recorded by the Polhemus LIBERTY 240/
16 tracking device to ensure that they were able to perform the
movements perfectly and that the only body parts moved were as
per instructions. In two subjects, electromyographs (EMGs) were
recorded during the scan.
Start Tongue experiment. Eight of eleven subjects who participated
in the Start Toes experiment also participated in this experiment.
This experiment was identical to the Start Toes experiment, but
the movements were performed in the reverse order from tongue
to toes.
Data were analyzed separately for each direction in the peri-

odic experiment and gave very similar results. To minimize order
effects, we pooled data from the two directions (Start Toes and
Start Tongue).

Slow Event-Related Experiment. Seven subjects participated in
a slow event-related paradigm experiment (two of the subjects
also participated in the periodic experiments). A 4.5-s block of
movement was followed by a 12-s rest. At the beginning of each
movement period, subjects heard the name of the body part to be
moved.Movement was paced with ametronome, which continued
beating during the rest period. All 20 body parts moved in the
periodic experiments were moved 20 times in a pseudorandom-
ized order balanced for history. The 400 movement–rest periods
were divided into 10 sessions. After five sessions, subjects left the
scanner for 20 min and then returned for the remaining five
sessions. In five subjects, EMGs were recorded.

Block Design. The seven subjects who participated in the slow
event-related experiment also participated in the block design
experiment. In each block, the subjects were instructed to perform
a bilateral or centralized movement of one of three body parts:
feet (flexion/extension), hands (flexion/extension of the wrist),
and tongue (side to side movement with mouth closed). Each
condition appeared eight times in a pseudorandomized order. As
in the previous experiments, subjects were blindfolded, and the
movements were guided by an auditory cue. At the beginning of

each movement block, subjects heard the name of the body part.
Each block lasted 9 s, and during the block, the movements were
paced at 1 Hz by a metronome. Each movement block was fol-
lowed by 9-s rest in which subjects heard the metronome but were
instructed not to move.

Contribution of the Different Designs. The results of both the pos-
itive and negative blood oxygenation level-dependent (BOLD)
patterns were highly consistent across the different designs.
However, each of these designs has advantages and disadvantages,
and associating the three results enables a comprehensive picture
of positive and negative BOLD in the primary motor cortex (M1)
and supplementary motor area (SMA).
The block design and the event-related experiments allowed

a clean analysis of the negative BOLD (Figs. 2–4), which is defined
as a reduction in the BOLD signal relative to the rest baseline.
In these designs (in contrast to the periodic design), the

movement of each body part was followed by a relatively long rest
period in which no movement was executed, making it possible to
contrast movement vs. rest. This design also allowed for a clear
presentation of the positive and negative time courses during
movement.
In addition, unlike the periodic designs, the order of movements

in these two experiments was randomized, and therefore, any
concerns regarding an interaction between neuronal activity
during movement of different body parts was addressed. This
is especially important in the case of multivoxel pattern
analysis (MVPA).
The following reasons are the reasons why we chose to use

these two designs and not just one of them.

A block design usually affords a better signal-to-noise ratio
than an event-related design, and it is also the most frequently
used and verified experimental design in the literature.

The block design experiment also enabled us to perform re-
gions of interest (ROIs) analysis of the general linear model
(GLM) parameter estimators and the time courses without
voxel hunting by using the block design as an external localizer
(Fig. 2C).

The use of an event-related design containing movements of 20
body parts allowed for a full and detailed depiction of the positive
and negative BOLD along M1 for all these body parts, which was
seen in the ROI analysis (Fig. 2C). This design allowed us to
confirm that significant information (either a significant reduction
or a significant increase in theBOLDsignal) could be found across
M1 during the movement of a single body part and that this
phenomenon was not restricted to a limited number of body parts.

In addition, the use of a random event-related design with 20
body parts allowed us to carry out an MVPA. MVPA was used
to predict which body part was being moved based on the
BOLD signal in M1 and the SMA. This prediction cannot
be done using an ordered periodic design; thus, we had to
use a randomized design. Furthermore, in this analysis, we
predicted the identity of the moving body part from among
a group of nearby body parts. Therefore, the use of a limited
number of body parts as in the block design experiment was
not possible, and instead, we used a design with a large num-
ber of body parts that was divided into face, hand, and leg and
trunk body parts. This design enabled us to deduce that so-
matotopic information exists in the positive BOLD in M1 and
the SMA as well as in the negative BOLD in M1 (Fig. 4).
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The periodic design enabled us to use phase-locked analysis
approaches (spectral analysis and cross-correlation analysis,
which are presented in Fig. 1 B, C, and F). A similar periodic
design and phase-locked analysis have been used for retinotopic,
somatosensory and auditory mapping.
These phase-locked analysis methods are optimal for topo-

graphical mapping, and we, therefore, found them particularly
well-suited for detailed, whole-body mapping of the motor
somatototopy in M1 and the SMA. However, these methods
require the body parts to be organized in a highly ordered fashion.
To partly overcome this problem, we used both directions—Start
Toes and Start Tongue—but to fully control for the order effect,
we used randomized designs as stated above.
The periodic experiments were not used to define negative and

positive BOLD because of the lack of rest period between
movements of adjacent body parts in this design.

EMG Measurements and Analysis. EMG measurements were re-
corded from two subjects in the periodic experiments and five
other subjects in the slow event-related experiment. MRI-com-
patible surface EMG electrodes (MP150 data acquisition system;
BIOPACSystems, Inc.) were used to recordmuscle activity during
the functional MRI scan from one of the following four muscles:
the right or left biceps brachii muscle or the right or left quadriceps
muscle. In the slow event-related experiment, the EMG signal was
recorded from different muscles in different sessions for each
subject. The temporal resolution was 400 Hz. The signal was fil-
tered using Acknowledge software (version 4.1.1) in the fre-
quencies of the TR (0.666Hz) and the interslice time (17.54Hz) to
reduce scan-related noise. EMG recordings at themovement time
ofeachof the20bodypartswereaveragedacross its repetitions and
represented as separate graphs (Figs. S1 and S2).

Functional MRI Acquisition. The BOLD functional MRI measure-
ments were obtained in a whole-body 3T Magnetom Trio scanner
(Siemens). The functional MRI protocols were based on multi-
slice gradient echoplanar imaging and a standard head coil. The
functional data were collected under the following timing
parameters: TR = 1.5 s, Echo Time (TE) = 30 ms, Flip Angle
(FA) = 70°, imaging matrix = 80 × 80, field of view = 24 × 24 cm
(i.e., in-plane resolution of 3 mm). We used a relatively short TR
value to later superimpose the phase-locking spectral analysis
approach; 26 slices with slice thickness of 4.5 mm and no gap were
oriented in the axial position for complete coverage of the cortex.

3D Recording and Cortex Reconstruction. Separate 3D recordings
were used for coregistration. High-resolution 3D anatomical vol-
umes were collected using T1-weighted images with a 3D turbo field
echo T1-weighted sequence [equivalent to magnetization-prepared
rapid acquisition with gradient echo (MP-RAGE)]. Typical
parameters were field of view: 23 right–left (RL) × 23 ventral–
dorsal (VD) × 17 anterior–posterior (AP) cm; foldover axis: RL;
data matrix: 160 × 160 × 144 zero-filled to 256 in all directions
(approximately 1 mm isovoxel native data); TR/TE = 9/6 ms; and
flip angle = 8°. Group results were superimposed on a 3D cortical
reconstruction of a Talairach normalized brain. Cortical re-
construction included the segmentation of the white matter using
a grow region function embedded in the Brain Voyager QX 2.1.2
software package. The cortical surface was then inflated.

Preprocessing. The first 10 images (during the first baseline rest
condition) were excluded from the analysis in all experiments
because of nonsteady state magnetization. Data were mainly
preprocessed using the Brain Voyager QX software package
(Brain Innovation). FunctionalMRI data preprocessing included
head motion correction (exclusion criterion was head move-
ments of more than 1 voxel). Slice scan time correction and high-
pass filtering using temporal smoothing in the frequency domain

removed drifts and improved the signal-to-noise ratio. Func-
tional and anatomical datasets for each subject were aligned and
fitted to standardized Talairach space.

GLM Analysis. This analysis assessed somatotopy and positive and
negative BOLD. The predictors were defined as a canonical
hemodynamic response function convolved with a square-wave
function representing the movement time, whereas the rest pe-
riod was modeled implicitly. For group analysis, we used a
Gaussian 8-mm filter for spatial smoothing. Cross-subject sta-
tistical parametric maps were calculated using a hierarchical
random effects model analysis.

Spectral Analyses. Spectral analyses were conducted with an in-
house program using MATLAB (MathWorks). Using standard
retinotopy procedures, we applied Fourier analysis to retrieve
responses that were locked to themovement repetition frequency.
Before the Fourier analysis, time courses were detrended to re-

move mean value and linear drifts. The complex Fourier coefficient
at the repetition frequency frep of interest is denoted by (Eq. S1)

F
�
frep

�
≡ a

�
frep

�
· ei·φðfrepÞ; [S1]

where aðfrepÞ represents the amplitude and φðfrepÞ represents the
phase. It is calculated by (Eq. S2)

F
�
frep

� ¼ XN
k¼1

TCk · e−2πiðk·frepÞ; [S2]

where TC represents the sample time course with mean value
removed and N is the number of sampled time points.
Both theamplitude andphaseparameterswereused to construct

a pure cosine, which served as amodel of the activation (Eq. S3). A
Pearson correlation coefficient was then calculated between the
model and the original time course. This procedure resulted in
a correlation coefficient for each voxel. This correlation coefficient
can also be written as a normalized Fourier coefficient (Eq. S3):
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and (Eq. S4)
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On the single-subject level, the correlation coefficient was used as
a direct measure of the voxel’s response to the movement of in-
terest. In regions showing a high correlation to the movement
repetition frequency, the phase value was inspected. Phase values
were distributed between −π and π, and they were linearly
transformed to represent the time points in each movement cycle.
The results from single subjects were analyzed in both spatially

smoothed [(Gaussian kernel of 4 mm full width at half maximum
(FWHM), which were used later for group analysis] and un-
smoothed data (Figs. S5 and S6) to ensure that the somatotopic
gradient was not the result of spatial smoothing of the signal.
On the group level, to run the random effect analysis, we used

GLM parameter estimators derived from a complementary
analysis as follows. First, a GLM analysis was carried out at the
single-subject level using the pure cosinemodel described above as
a predictor. The pure cosine model predictor is positively biased,
because it is derived from the Fourier analysis (as described
above). To account for this bias, we applied the same approach to
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20 other nonstimulus-related frequencies for each subject. The
average GLM parameter estimator value from these analyses was
used as the bias estimator and subtracted from the GLM pa-
rameter estimator values from individuals in the stimulus repre-
sentation frequency. The resulted GLM parameter estimator
values were then used in a second-level analysis for the group
random effect. Finally, the random effect results were corrected
for multiple comparisons using the Monte Carlo method (1,000
iterations, α < 0.05) with a priori threshold of P < 0.05.
The phase maps of the individual subjects were averaged using

a circular average method to create a mean phase map. These
phase values were distributed between −π and π, and they were
linearly transformed to represent the time points in each
movement cycle. Because of the time delay of the hemodynamic
response, the phase code does not temporally overlap with the
movement time. The earliest response detected in the anatom-
ically defined primary motor cortex was assumed to correspond
to toe movement (in the Start Toes experiment) or tongue
movement (in the Start Tongue experiment), which was the first
movement in the movement cycle. Similarly, the latest response
was assumed to correspond to the last movement in the move-
ment cycle. The hemodynamic response was assumed to be
spatially uniform, thus leading us to interpret latencies between
the shortest and latest responses as driven from movements of
intermediate body parts. These values constructed the phase
code corresponding to the specific preferred body part of each
voxel. The phase maps were thresholded by both the averaged
correlation coefficient map and the random effect corrected for
multiple comparison map.

MapAlignmentMeasure.To quantify the compatibility between the
spectral analysis somatotopic map and the cross-correlation map,
we used an alignment index (Fig. 1). The alignment index was
calculated voxelwise as (Eq. S5)

Alignment Index ¼ 1−
jΔϕj
π

; [S5]

where Δϕ is the difference between the phases of two voxels.
This index is one when the phases are identical across the maps
and zero when the phases are opposite of one another. The
similarity of two maps can, therefore, be evaluated by comparing
the distribution of its alignment indices with the distribution of
random maps. If the maps are similar, the alignment indices will
be distributed with a sharp peak to one. Random map indices are
distributed with linear increase to one. The difference between
these distributions was assessed statistically.

ROI Analysis.ROIs were defined at the group level from the block
design experiment, which served here as an external localizer
experiment. Six ROIs in every homunculus and each hemisphere
were defined from the dorsal and ventral peaks of negative BOLD
of legs, hands, and tongue movements vs. rest baseline.
GLM analysis was performed in each ROI, yielding the GLM

parameter estimators of movements of each of the body parts vs.
rest baseline in the slow event-related experiment or event-re-
lated averaging of the time course of the slow event-related ex-
periment separately for legs, hands, and face body parts.

Multivoxel Pattern Analysis. We used a multiclass support vector
machine (SVM) to classify the data of the body parts in dif-
ferent ROIs in M1 and the SMA (Fig. 4). The classification was
carried out in ROIs that were defined functionally and con-
strained by the anatomical position of the central sulcus or
Brodmann area 6 in the medial wall (separately for each
subject) to ensure that the data used for classification were,
indeed, positive or negative BOLD. The ROIs were defined as
significantly activated voxels in the contrast legs, hands, or face

vs. the rest baseline in the event-related experiment, which
were located on the anterior bank of the central sulcus or
medial Brodmann area 6, as well as deactivated voxels on the
anterior bank of the central sulcus or the lateral parietal area
in the default system.
In contrast to the Monte Carlo correction of the statistical

parametric maps, the correction for multiple comparisons of the
ROIs used for the MVPA was done on the voxel level using the
FDR method with α < 0.05. We chose this method to ensure that
each voxel (feature) used for classification was, indeed, signifi-
cantly positive or negative. The uncorrected values were between
P < 0.023 and P < 0.039.
In the next step, we defined the data to be classified separately

for each subject. We used unsmoothed data to preserve the
signal’s distributed spatial pattern and avoid leakage of in-
formation from the positive to negative BOLD. For each of the
trials in the slow event-related experiment, we obtained a GLM
parameter estimator value in each voxel. This yielded 20 × 20
GLM parameter estimator values for each voxel in the ROI,
corresponding to the 20 body parts and 20 trials for each body
part. We then divided the data into three groups of neighboring
body parts: five leg and trunk-related body parts (toes, feet,
thighs, buttocks, and stomach), nine hand-related body parts
(arm, elbow, wrist, fist, and the five fingers), and six face-related
parts (forehead, nose, eyelids, lips, jaw, and tongue). The data
for each trial across the different voxels were then z-scored to
avoid classification because of global elevation or reduction of
the signal.
We then took one group of body parts and one ROI (e.g., hand-

related body parts and hand-positive BOLD M1 ROI) and used
the leave one out approach for classification.We used the training
data to train a linear SVM classifier with the svmtrain command in
Matlab. Because there were several body parts in each group, we
used a multiclass SVM, running the classification repeatedly
between the different pairs of body parts within the one body part
group and then testing the performances of the classifier on the
test data. The classification was considered correct only when the
classifier chose the correct output in all the classification pairs.
The performances of the classifier given a group of body parts in
a given ROI were calculated as the mean of the percentages of
successful classifications of each body part within this category.
The group results were obtained by averaging the classification
results of the different subjects.
Significance levels were assessed by a permutation test on each

group of body parts in each ROI in each subject. In this test, we
randomly permutated the labels of the different categories and
then trained and tested the classifier on this incorrectly labeled
data. This procedure was repeated 1,500 times, resulting in
a distribution of performances of the classifier. The mean of this
distribution stood for the chance levels of classification and was
∼1/number of categories. For each distribution, we also calcu-
lated the 95th percentile. Only if the performance of the classi-
fier was above this percentile was the classification considered
significant.
To exclude the possibility that the classification resulted from

the influence of nonneuronal factors (e.g., head movements) on
the classification, we also compared the accuracy of the classi-
fication results in M1 and the SMA with the accuracy of classi-
fication using signals from the ventricles, in which the signal
derives purely from nonneural factors. The classification for all
ROIs and all body part groups was significantly higher than in the
ventricles. Thus, the accuracy of classification found in M1 and
the SMA was not caused by nonneuronal factors.
As an additional control, we examined whether negative BOLD

elicited by the movements outside of the motor system also en-
abled accurate classification. In addition to the negative BOLD in
M1, the movements also elicited negative BOLD in the default
system, which is also deactivated quite nonspecifically in many
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other tasks. We, therefore, performed an additional control,
applying MVPA to the negative BOLD signal derived from the
lateral–parietal area of the default system (e.g., classifying hand
body parts using negative BOLD from the lateral–parietal area
of the default system elicited by hand movements). This classi-
fication was significantly lower than the classification using
negative BOLD in M1 (P < 0.004, P < 0.02, and P < 0.03).
Classification using negative BOLD from the default system did
not differ significantly from the classification using BOLD signal
from the ventricles (P < 0.46, P < 0.06, and P < 0.68 for face,
hand and leg body parts, respectively). Thus, movement-elicited
negative BOLD in the default system did not contain body part-
specific somatotopic information.

Contribution of the Different Analyses to Somatotopic Mapping. We
used three analysis methods (GLM, cross-correlation, and spectral
analysis) for somatotopic motor mapping in this study. These
methods are complementary, and each method has advantages
and disadvantages.
Specifically, the GLM analysis is a classical analysis method

in functional MRI studies, and it has been applied previously in
motor somatotopic mapping with a block design approach in
M1 and the SMA. GLM makes it possible to identify the peak
activations of the different body parts as well as the contrasts
between different body parts (i.e., finding the areas in which the
movement of one body part elicits significantly greater BOLD
activation than the activation elicited by the movements of other
body parts).
GLM analysis was also critical in defining the negative BOLD

(which is defined as a decrease in the BOLD signal during
movement relative to the rest baseline), because the baseline in
this analysis implicitly contains the rest periods but not the
movement periods of the experiment.
However, the GLM analysis is less optimal for mapping brain

areas that continuously map a certain parameter in a topographic
manner. In such areas, including in M1 and the SMA, there are
usually two features that appear concurrently: a gradual pro-
gression of the neuronal representation of the parameter (in this
case, the body part represented) as well as an extensive overlap in
representation (in this case, an overlap in the representation of
the different body parts).
These two features pose a signal-to-noise difficulty for GLM

analysis. First, in this analysis, each gradual change in the rep-
resented parameter (e.g., the body) is modeled separately (e.g., in
our experiment, there were 20 separate predictors in the GLM,
one for each body part), which results in a large number of
parameters in the model. Second, because of the overlap in
representation, it is often the case that the signal of each rep-
resented feature separately (e.g., each body part) is low, and
therefore, the activation of a given feature relative to the rest
baseline or a contrast between the activations of different features
cannot always be detected.
By contrast, periodic analyses are optimal for mapping such

gradual topographic representations in the brain (8), and they
have been used for the mapping of retinotopic, cochleotopic, and
somatosensory maps (9–11) but not motor somatotopy. Because
of the assumption that the representation is continuous and to-
pographic (which does not exist in GLM), periodic analyses are
more efficient in mapping these gradients if they exist. Even if
the amplitude of the response is relatively low in a certain voxel,
the methods still allow for the extraction of the represented
parameter (e.g., the body part represented by a phase or lag
value). Therefore, these sensitive analyses require fewer repeti-
tions and enable much faster mapping [e.g., for somatotopic
mapping of 20 body parts using the slow event-related design
(and GLM analysis), the scanning time for each subject was 2 h,
whereas the same mapping using the periodic experiments (and
the periodic analysis techniques) only took 20 min of scanning].

These advantages are critical at the single-subject level, be-
cause the variability and lower signal to noise ratio are often even
more apparent at this level. The speed of scanning can be crucial
as well in the case of somatotopic/motor mapping in single
subjects for medical purposes (for instance, for guidance of future
deep brain stimulation).
Thus, we also used two complementary periodic analyses (cross-

correlation analysis and spectral analysis), which yielded very
similar results (Fig. 1D). However, each of these analyses has
slight advantages and disadvantages (especially in relation to the
assumptions concerning the shape of the hemodynamic signal),
and we, therefore, chose to analyze the data with both of them.
Spectral analysis seems to be highly efficient for topographic

mapping and gives robust results in a short scanning time without
requiring a large number of repetitions, both at the group (Fig.
1C) and single-subject (Figs. S5 and S6) levels.
This robustness and efficiency are also associated with a higher

signal-to-noise ratio than the GLM method in the case of to-
pographic mapping. Specifically, motor homunculi, such as M1
and the SMA, may have overlaps in the representation of dif-
ferent body parts. As stated above, such an overlap may pose
problems when using the GLM method. In contrast, when
a continuous experimental design is used, spectral analysis is
much more subtle and efficient for detecting the representation
in voxels with different amounts of overlap. This efficiency is
because of the fact that Fourier analysis is generally less sensitive
to the exact shape of the response and more driven by the pe-
riodicity and timing of the response. The shape of the hemo-
dynamic response in a continuous experiment may vary as
a function of the degree of overlap between body part repre-
sentations (the response will be wider when the overlap in
representation is larger). Because spectral analysis is not con-
fined to a specific hemodynamic response function (HRF) model
or shape of response, it can identify various activation shapes,
including broadly tuned voxels (which are assigned intermediate
phase values that average the phase values of the different body
parts represented) or highly selective voxels.
In cross-correlation analysis, similar to spectral analysis, a pe-

riodic analysis is carried out, but the HRF is still taken into ac-
count. This analysis shares the robustness and efficiency relative
to GLM in mapping topographic gradients described for spec-
tral analysis. As stated above, the two methods produce highly
similar results.
However, there are several differences between these two

methods. Primarily, these differences arise from the fact that
spectral analysis does not take into account the HRF, whereas the
cross-correlation analysis does use an HRF model of activation.
The HRF predictor is the canonical predictor for modeling the

hemodynamic response in the brain, and it can simulate this re-
sponse quite well. However, this predictor makes the cross-corre-
lation analysis highly sensitive to the shape of the response and the
degree of overlap in representation. Given that the HRF predictor
corresponds to themovement time of a single body part, this analysis
is suitable when the overlap in representation is small but less
adequate when the voxel is broadly tuned to movements of various
body parts. This finding is also emphasized by the fact that this
analysis, in contrast to the GLM and spectral analysis, is a winner
takes all analysis—only one lag value corresponding to only one
body part is chosen. This result may allow a clear estimation of the
represented body part in each voxel but as stated above, is less
optimal in cases of some overlap in the representation.

Evaluation of the Gradual Shift in Representation Using Different
Analysis Methods. To evaluate the gradual shift in representa-
tion using GLM, spectral, and cross-correlation analyses, we
sampled 22 consecutive regions of interest along M1 in the right
and left hemispheres. We then extracted the measure of soma-
totopy in each of these ROIs using each of the three analysis
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techniques. In the cross-correlation analysis, the measure of
somatotopy is the lag value, and in the spectral analysis, this
measure is the phase value. In the GLM analysis, because the
analysis produces GLM parameter estimators (β-values) and t
values vs. the rest (which are the β-values in relation to the noise)
for each of the 20 body parts, we chose the body part with the
highest t value as the measure of somatotopy (1). We then
normalized these measures of somatotopy between zero and
one (Fig. S4).
The graphs in Fig. S4 illustrate the fact that somatotopy using

the GLM method tends to progress along the homunculus in
amore jumpy or stepwise manner than the other two analyses.We
quantified this difference using two measures.

As the first measure, we used the normalized sum of the sec-
ond derivative of each graph separately. For the purpose of
this analysis, which quantifies the degree of smoothness of the
progression of somatotopy along M1, we omitted the zero
values from the first derivative (which represent ROIs along
M1 in which the somatotopy measure did not change) and
then calculated the second derivative. The sum of the absolute
value of the second derivative was normalized by the number
of ROIs that was not omitted. The lower that this measure

becomes, the greater the smoothness of the somatotopy. The
results in the left hemisphere were 0.09 for cross-correlation
analysis, 0.11 for spectral analysis, and 0.31 for GLM analysis.
The results in the right hemisphere were 0.08 for cross-corre-
lation analysis, 0.1 for spectral analysis, and 0.18 for GLM
analysis. Therefore, cross-correlation and spectral analysis
produce a smoother gradual shift in the somatotopic represen-
tation according to this measure.

As the second measure, we calculated the linear fit for each of
the graphs separately and then calculated the residuals be-
tween this linear fit and the graph. The variance of the abso-
lute value of these residuals served here as a measure of the
smoothness of representation: as this variance gets smaller,
the smoothness of somatotopy increases. The results in the
left hemisphere were 0.0047 for cross-correlation analysis,
0.0045 for spectral analysis, and 0.014 for GLM analysis.
The results in the right hemisphere were 0.0036 for cross-cor-
relation analysis, 0.0025 for spectral analysis, and 0.0038 for
GLM analysis. Therefore, this measure also suggests that the
results of GLM analysis were generally less smooth than the
results of the other two analyses, but this difference was more
pronounced in the left hemisphere.

1. Meier JD, Aflalo TN, Kastner S, Graziano MSA (2008) Complex organization of human
primary motor cortex: A high-resolution fMRI study. J Neurophysiol 100:1800–1812.

Fig. S1. EMGmeasurements from the quadriceps muscle of one subject when moving each of the 20 body parts in the slow event-related experiment. Orange,
the duration of instructed movement.
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Fig. S2. EMG measurements from the biceps muscle of one subject when moving each of the 20 body parts in the slow event-related experiment. Orange, the
duration of instructed movement.

Fig. S3. (A) Anatomical display showing the areas enlarged in B–D (purple). (B–D) Statistical parametric maps for three subjects separately in the slow event-
related experiment of face (Left), hand (Center), and leg body parts (Right).
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Fig. S4. The normalized somatotopy measure of cross-correlation analysis (lag value), spectral analysis (phase value), and GLM analysis (the body part with the
highest t value) is shown in 22 ROIs along the primary motor cortex in the left and right hemispheres.

Fig. S5. Mapping M1 in single subjects using spectral analysis of the unsmoothed signal (US), smoothed signal (S), and cross-correlation analysis (CC).

Fig. S6. Mapping the SMA in single subjects using spectral analysis of the unsmoothed signal (US), smoothed signal (S), and cross-correlation analysis (CC).

Zeharia et al. www.pnas.org/cgi/content/short/1119125109 7 of 9

www.pnas.org/cgi/content/short/1119125109


Peak GLM
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Fig. S7. Significant peak activations in M1 (19 peaks at the right hemisphere and 18 peaks at the left hemisphere) when contrasting each body part vs. all of
the others masked by contrasting this body part with the rest (Table S1 shows the significance values).

Table S1. The t and P values of the contrasts in Fig. 1A, Right

Peak thresholds

M1 right
hemisphere M1 left hemisphere

t P t P

Toes 5.8 0.001 6.7 0.0005
Feet 7.2 0.0003 10.5 0.00004
Hips 8.5 0.0001 7.4 0.0003
Buttocks 7.4 0.0003 8.1 0.0001
Stomach 6.1 0.0008 5.1 0.002
Arm 5.5 0.001 8.1 0.0001
Elbow 8.3 0.0001 10.8 0.00003
Wrist 8.2 0.0001 10.7 0.00003
Fist 13 0.00001 13 0.00001
Little finger 6.8 0.0004 5.9 0.001
Ring finger 6.3 0.0007 7.3 0.0003
Middle finger 6.5 0.0006 6.3 0.0007
Index finger 4.7 0.003 2.55 0.04
Thumb 4.2 0.005 4.6 0.003
Forehead 4.5 0.004 2 0.09 (NS)
Nose 7.1 0.0003 4.6 0.003
Eyelids 1.9 0.1 (NS) 0.9 0.4 (NS)
Lips 6.9 0.0004 4.8 0.003
Jaw 6.3 0.0007 5.7 0.001
Tongue 8.6 0.0001 7.3 0.0003

The t and P values for the separate contrasts for each body part and
hemisphere. Each body part was contrasted against all others and masked
by this body part vs. the rest. NS, not significant.
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Table S2. The t and P values of the contrasts in Fig. 1E

Peak thresholds

SMA right
hemisphere SMA left hemisphere

t P t P

Toes 6.3 0.0007 6.9 0.0004
Feet 8.5 0.0001 10.1 0.00005
Hips 9.1 0.00009 8.6 0.0001
Buttocks 10.5 0.00004 10.6 0.00004
Stomach 8.8 0.0001 9.2 0.00009
Arm 8 0.0002 10.1 0.00005
Elbow 8.8 0.0001 9.59 0.00007
Wrist 10.5 0.00004 11.9 0.00002
Fist 13.5 0.00001 15.7 0.000004
Little finger 8.2 0.0001 9.7 0.00006
Ring finger 8.9 0.0001 11 0.00003
Middle finger 13.3 0.00001 19.1 0.000001
Index finger 10.5 0.00004 10.6 0.00004
Thumb 9.1 0.00009 9.1 0.00009
Forehead 8.3 0.0001 9 0.0001
Nose 10.8 0.00003 11.5 0.00002
Eyelids 6.3 0.0007 7.6 0.0002
Lips 10.6 0.00004 11.4 0.00002
Jaw 7.2 0.0003 8.2 0.0001
Tongue 11.1 0.00003 9.8 0.00006

The t and P values for the separate contrasts for each body part and
hemisphere. Each body part was contrasted against rest.
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