Supporting Information

Perry et al. 10.1073/pnas.1207600109

Fig. S1. Zoomed-in experimental (background is subtracted; black) and calculated (red) mass spectra showing (A) [2+Na]⁺, (B) [4+Na]⁺, and (C) [7+Na]⁺.

Fig. S2. Comparison of the experimental (black) and calculated (red) isotope distributions for [1•3]⁺.

Fig. S3. Experimental (background is subtracted; black) and calculated (red) mass spectra showing the coordination complex [[Rh₂(esp)₂]•PhI(O₂CC(CH₃)₃)₂]⁺ formed between catalyst and PhI(O₂CC(CH₃)₃)₂ oxidant.

Fig. S4. Representative high-resolution tandem MS (MS/MS) data. (*A*) Product ions formed by isolating and dissociating $[5]^+$ or $[1 \bullet 3]^+$ in single-stage mass spectra (Fig. 3). (*B*) Product ions formed by isolating and dissociating $[1 \bullet H_2O]^+$ at *m/z* 776.0936 in *A*. (*C*) Product ions formed by isolating and then dissociating $[1]^+$ at *m/z* 758.0831 in *A*, $[1+H]^+$ at *m/z* 759.0853 in *B*, or $[1]^+$ at *m/z* 758.0808 from the single-stage spectrum shown in Fig. 3. MS/MS parameters: accumulation time = 500 ms; normalized collision energy = 30%; ion activation time = 100 ms; collision gas = He. (*D*) MS² spectra for $[9]^+$ at *m/z* 1,617.7317 in single-stage mass spectra (Fig. 3).

Fig. 55. Desorption electrospray ionization (DESI) MS spectra showing the overlapping isotope distributions of $[6]^*$ and $[8]^*$ for ROSO₂¹⁴N (*A*) and ROSO₂¹⁵N (*B*). This figure shows the complete spectrum before background subtraction (after background subtraction shown in Fig. 4 *G* and *H*).

Fig. S6. DESI-MS spectra (background is subtracted) showing a comparison of the experimental (black) and calculated (red) isotopic distribution composed of [6+Na]⁺ and [8+Na]⁺ (3:1) for Cl₃CCH₂OSO₂¹⁴NH₂ (*A*) and Cl₃CCH₂OSO₂¹⁵NH₂ (*B*).

DN A C

Fig. 57. Mass spectra showing the absolute intensities of $[7+Na]^+$ and $[6+Na]^+/[8+Na]^+$ for admantane concentrations of 10^{-2} M (A and B) and 10^{-1} M (C and D). In the experiment, the DESI spray was a mixture containing 10^{-5} M 2 and 10^{-5} M 3 in anhydrous CH₂Cl₂. A mixture containing 10^{-2} M 1 and 10^{-2} M adamantane (or 10^{-1} M adamantane) was deposited on a glass slide.

Fig. S8. Spectra showing the signal intensities for the sulfonamide product of adamantace carboxylic acid (*Upper*) and $[6+Na]^+/[8+Na]^+$ (*Lower*). In the experiment, the DESI spray was a mixture containing 10^{-5} M **2** and 10^{-5} M **3** in anhydrous CH₂Cl₂. A mixture containing 10^{-2} M **1** and 0.5×10^{-2} M, 10^{-2} M, or 10^{-1} M adamantane carboxylic acid was deposited on a glass slide.

Fig. S9. Negative-mode DESI-MS spectra showing Rh²⁺/Rh³⁺ species [Rh₂(esp)₂Cl]⁻ at *m/z* 793.0493 and [Rh₂(esp)₂Cl₂]⁻ at *m/z* 828.0225.

Fig. S10. Mass spectra of a bulk solution containing 1, 2, and 3 in CH_2CI_2 after several hours of reaction time. The spectra show experimental (black) and calculated (red) isotopic distributions for $[8+Na]^+$ using $CI_3CCH_2OSO_2^{14}NH_2$ (A) and $CI_3CCH_2OSO_2^{15}NH_2$ (B).

AS PNAS