Aromatic Interactions as Control Elements in Stereoselective Organic Reactions

Elizabeth H. Krenske^{*,†} and K. N. Houk^{*,‡}

[†] School of Chemistry, University of Melbourne, VIC 3010, Australia, and Australian Research Council Centre of

Excellence for Free Radical Chemistry and Biotechnology; [‡]Department of Chemistry and Biochemistry,

University of California, Los Angeles, CA 90095, USA

E-mail: ekrenske@unimelb.edu.au, houk@chem.ucla.edu

SUPPORTING INFORMATION

Contents	Page
Table S1. Comparison of Stereoselectivities for Reactions in Schemes 1–7, as Predicted by B3LYP, B3LYP-D3, and M06-2X	S2
Figure S1. Comparison of stereoselectivities for oxyallyl/furan cycloadditions, predicted by B3LYP, B3LYP-D3, and M06-2X	S3
Geometries and energies of transition states from Table S1	S4
Citation for Gaussian 09	S20

Table S1.	Comparison	of Stere	oselectivities	for	Reactions	in	Schemes	1–7,	as	Predicted	by	B3LYP,	B3LY	YP-D3,	and
$M06-2X^a$															

		 ΔΔ <i>Ε</i> [‡]	
Reaction	B3LYP	B3LYP-D3	M06-2X
Sharpless asymmetric dihydroxylation of styrene, catalyzed by (D	HOD),PYDZ (Scheme	$(21)^{21,22}$	
(DHQD)_PYDZ·OSO4 OH		-)	
$\begin{array}{c} & (Cat.) \\ & & & \\ & & $	0.9	6.2	3.9
(DHQD) ₂ PYDZ	(7,1) $(7,1)$ $(7,1)$		
	hes $(\text{Scheme } 2)^{25}$		
$\begin{array}{c} \begin{array}{c} & 1 \mathbf{a} (\mathrm{cat.}) \\ Ar & Alk \end{array} \xrightarrow{Dat} Ar \xrightarrow{Cat} Alk \\ ee 72-98\% \end{array} \xrightarrow{Catalyst 1a:} \\ \begin{array}{c} & Me \\ (X = NHTs) \\ & H_2N \\ \end{array} \xrightarrow{Me} \\ \begin{array}{c} H_2N \\ H_2N \\ \\ \end{array} \xrightarrow{Ph} \end{array}$	2.5	2.6	3.3
Hetero-Diels-Alder reactions of <i>a</i> -xylylenes with benzaldehyde (S	Scheme 3) 27,28		
OR OR OR			
$\begin{array}{c} & & \\$	R = TMS = 0.6	0.1	0.7
	1.1.1.1		(S. 1
Asymmetric netero-Diels-Alder reactions of Kawai's diene with a	idenydes, catalyzed by	a IADDOL deriva	tive (Scheme 4)
$RO \xrightarrow{4 \text{ (cat.)}} RO \xrightarrow{4 \text{ (cat.)}} RO \xrightarrow{7 \text{ (cat.)}} RO 7 \text{ ($	1.5	4.5	3.0
Enantioselective acvl transfer catalyzed by DHIPs (Scheme 5) 32,33			
$\begin{array}{c} OH \\ Ar \\ Ar \\ Alk \end{array} \xrightarrow{R} O \\ G (cat.) \\ S 8-85 \end{array} \xrightarrow{O} R OH \\ Ar \\ Ar \\ S 8-85 \end{array} \xrightarrow{Catalyst 6:} (CF_3 \\ CF_3 \\ CF_$	2.7	6.8	4.2
Diastereoselective Diels-Alder reactions of anthracene with aryl-s	ubstituted maleic anh	ydride derivatives (S	Scheme 6) ³⁴
$ \widehat{\mu}^{R} \qquad \widehat{\mu}^{R} \qquad \widehat{\mu}^{R} (\widehat{\mu}) \qquad$			
The second secon	R = Me - 1.0	-0.3	0.0
^{' Ο} Ο ^{'' Ο} ^R Ο ^{'' Ο} 9	R = OMe = 1.3 R = Rr = 2.2	2.5	2.5
R 8:9 Me 1:3 OMe 5:1 Br 17:1	к – Ы 3.3	5.5	3.9
Enantioselective Claisen rearrangements catalyzed by chiral guan	idinium salts (Scheme	(7) ³⁶	
$MeO \xrightarrow{11a (cat.)}_{0} MeO \xrightarrow{11s}_{0} S \xrightarrow{i}_{1} N^{i} H_{2}$ $H H H H H H H H H H H H H H H H H H H $	3.0	2.1	2.8

^{*a*} Transition state coordinates were obtained where possible from the publications cited. Where the coordinates had been optimized with a level of theory other than B3LYP/6-31G(d), the geometries were re-optimized at the B3LYP/6-31G(d) level (using the LANL2DZ effective core potential and basis set for Ru and Os). The one exception to this was the catalytic asymmetric hetero-Diels–Alder reaction of Rawal's diene, where transition state geometries were taken directly from the literature and not re-optimized. Subsequent B3LYP-D3 single-point calculations employed the same mixed basis set (LANL2DZ on Ru and Os, 6-31G(d) on other atoms), while M06-2X single-point calculations employed LANL2DZ on Ru and Os and 6-311+G(d,p) on other atoms. B3LYP-D3 calculations employed zero-damping. Predicted stereoselectivities ($\Delta \Delta E^{\ddagger}$) are given in kcal/mol.

Figure S1. Comparison of stereoselectivities for oxyallyl/furan cycloadditions, predicted by B3LYP, B3LYP-D3, and M06-2X. Transition state geometries were optimized at the B3LYP/6-31G(d) level. B3LYP and B3LYP-D3 single-point calculations employed the 6-31G(d) basis set, while M06-2X single-point calculations employed the 6-311+G(d,p) basis set. Predicted stereoselectivities (ΔE^{\dagger}_{rel}) are given in kcal/mol.

Geometries and energies of transition states from Table S1

The coordinates of transition states re-optimized with B3LYP are listed below. Below each structure is listed the B3LYP single-point energy (E), B3LYP-D3 dispersion energy (E_{disp}), and M06-2X single-point energy (E_{M06-2X}); the basis sets used for these calculations are described in the footnote to Table S1. Energies are given in Hartree. Calculations employed the Gaussian 09 software, the citation for which is given on page S20.

Sharpless asymmetric dihydroxylation of styrene, catalyzed by (DHQD)₂PYDZ

_			
C	-0.428174	3.675455	1.167034
С	-0.128928	2.858177	0.079910
С	0.165277	3.422999	-1.177381
C	0 163751	4 824809	-1 300217
c	0 120/55	5 629020	0 212025
	-0.136455	5.050929	-0.212035
С	-0.437243	5.066761	1.026400
С	0.482052	2.608619	-2.350691
С	0.236890	1.246813	-2.452690
0	1,860295	0.233742	-1.732124
0 g	3 382557	1 129825	_1 592067
05	2 045002	1 520442	-1.552007
0	5.645692	1.536445	0.031402
0	2.691264	2.646308	-2.164312
0	4.531618	0.746762	-2.831753
N	4.327128	-1.098716	-0.707730
С	3.879386	-1.535149	0.664336
C	4.441646	-2.956188	0.966904
c c	5 555271	2 2 2 2 2 7 7 7	0 042842
	J.JJJZ/4	-3.203777	-0.042042
C	4.959315	-3.429163	-1.462344
С	4.092879	-2.161430	-1.730222
С	6.545787	-2.106892	-0.059378
С	5.802677	-0.861821	-0.616255
С	2,366208	-1,401003	0,959696
c c	2 080658	1 632/12	2 113178
	2.0000000	-1.032412	2.443170
C a	2.234433	-0.599800	3.420960
C	1.988150	-0.950739	4.787873
Ν	1.584577	-2.188178	5.188346
С	1.427469	-3.103233	4.254235
С	1.662138	-2.873494	2.881697
С	2.144829	0.040364	5.796491
С	2.536023	1.312702	5.481294
Ċ	2.792529	1.668317	4.127713
c c	2 650/76	0 731054	3 115602
	2.039470	0.731934	2.056064
0	3.101228	2.903003	3.950804
С	3.414931	3.431242	2.633425
С	4.181999	-4.736854	-1.685943
С	3.747891	-4.948029	-3.142082
0	1.666045	-2.382036	0.159930
С	0.346665	-2.203073	-0.088384
С	-0.288540	-3.217172	-0.845493
c c	_1 622737	_3 057781	-1 105731
c c	2 220600	1 000520	-1.103731
C	-2.239000	-1.009550	-0.597520
N	-1.593191	-0.9/1503	0.0961/5
Ν	-0.281851	-1.135022	0.363986
0	-3.564017	-1.747894	-0.852243
С	-4.234825	-0.560988	-0.365208
С	-4.010069	0.609259	-1.308708
С	-4.162352	1.953497	-0.843907
Ċ	-3.981480	3.002545	-1.801948
N	_3 678877	2 770007	
2		1 526602	-3.107204
C a	-3.54/088	1.520083	-3.49/294
C	-3.703086	0.414048	-2.639509
С	-4.123626	4.352726	-1.374831

С	-4.428555	4.654639	-0.074676
С	-4.605650	3.614054	0.877990
С	-4.479893	2.289872	0.502494
0	-4.898529	4.043466	2.136638
С	-5.065036	3.068884	3.156377
С	-5.741891	-0.867820	-0.193037
С	-6.401601	-1.662461	-1.360639
С	-7.412399	-2.652570	-0.741939
С	-6.671817	-3.723188	0.097978
С	-5.747636	-2.947983	1.095530
N	-6.038562	-1.498781	1.114793
С	-7.480073	-1.319632	1.379424
С	-8.348193	-1.872697	0.204564
С	-5.918323	-4.768000	-0.740733
С	-5.348956	-5.923473	0.092223
Н	0.278707	-4.074636	-1.191827
Н	-2.201699	-3.778469	-1.673475
н	-3.822773	-0.329410	0.618332
н	-5,904970	2.396975	2,936297
н	-3.306861	1.364292	-4.547875
н	-3.577005	-0.589283	-3.032400
н	_3 979238	5 129550	-2 118694
н	-4 536303	5 680278	0 263820
и и	_5 27591 <i>1</i>	3 625730	1 070934
и п	-1 15/089	2 172019	3 202552
и п	-4 617720	1 502686	1 232273
и п	-6 211599	0 120120	_0 135/96
п ц	-5 652132	_2 200971	-1 0/7253
и п	-5.052152 8.837162	1 055/31	0 340724
п ц	-7 672047	-1.053451	1 5/6238
и п	7 707616	1 837055	2 317735
п ц	-9 1//3/3	-2 527297	0 579753
н	-4 696658	-3 077738	0 825496
н	-5 865172	-3 321469	2 119042
н	-7 437448	-4 265986	0 673385
и и	-6 601037	-5 176571	-1 /99506
н	-5 102315		-1 290950
н	-4 624755	-5 570407	0 836141
н	-6.145442	-6.450868	0.631787
н	_4 837917	-6 656130	-0 543070
н	2 013943	-0.414444	0 663482
н	2.861273	1.015532	2.090589
н	2 523435	3 343497	2 002420
н	3.686034	4.482924	2.741234
н	4 237175	2 881013	2 164498
н	2 656553	2.001013	6 240234
н	1 938606	-0 255049	6 820319
н	1 098818	-4 087953	4 585911
н	1 500897	-3 679005	2 174196
н	4 344396	-0 811269	1 339392
н	5 955328	0 018685	0 013675
и и	6 138586	-0 610601	-1 62/329
и п	6 921507	-1 017051	0 95375/
и п	7 115137	2 3/122/	0 684488
н	6 06/710	-2.J41224 _1 210/8/	-0.004400 0 2/7700
ц	1 820026	-7.080617	1 000700
п ц	4.029920 3 6/6055	-2.30301/ _3 70/739	T.320700 T.320700
п ц	1 323870	-J. 7104/20 _1 710110	-2 701035
п п	4.JZJ0/U	- 1 · / 10119 3 / 22070	-2.101033 2 1602/0
л U	J.0U3044 7 002725	-3.4339/0	-2.100240 1 526270
л U	-1.393/23 6 012175	-J.130903 0 070310	-1.3302/U 2 0/7521
л ц	-0.9101/0 3 00005	-0.9/0210 _2 306102	-2.04/321 _1 710715
п u	J.UZOÖÖJ 1 010700	-2.390192 5 501100	-1.0/12/13
11	4.012/92	-2.201102	-1.3/4023

Η	3.295972	-4.757021	-1.036909			
Н	3.215800	-5.898731	-3.261441			
Н	3.079714	-4.150102	-3.487488			
Н	4.614524	-4.966035	-3.814209			
Н	0.303953	0.770830	-3.424181			
Н	-0.359509	0.732208	-1.710854			
Н	0.723291	3.154343	-3.256167			
Н	0.398725	5.271386	-2.263210			
Н	-0.139440	6.719339	-0.329137			
Н	-0.673438	5.699196	1.877917			
Н	-0.653818	3.223322	2.128919			
Н	-0.120136	1.780269	0.212462			
1	imaginary fre	equency				
Е	E = -3038.935882					
$E_{disp} = -0.203501$						
\mathbf{E}_{M}	$E_{M06-2X}^{} = -3038.317307$					

0s	3.283303	1.478476	0.365469
0	2.590926	2.866368	1.200556
0	1.830509	1.164837	-0.596638
0	4.569698	2.198798	-0.543651
0	3.565165	0.362514	1.667320
N	4.213639	-0.570512	-0.891309
С	5.672860	-0.596711	-0.560430
H	5.762623	-0.621751	0.529322
Н	6.087320	0.352637	-0.905306
С	6.381891	-1.807162	-1.226758
Н	7.316408	-1.484665	-1.700662
Н	6.646485	-2.565993	-0.480187
С	3.672050	-1.928792	-0.520195
Н	4.095500	-2.124606	0.468858
С	4.208543	-2.990434	-1.523425
Н	4.488904	-3.900519	-0.983143
Н	3.427558	-3.271906	-2.235310
С	5.421429	-2.406648	-2.269809
Н	5.922613	-3.191989	-2.848334
C	4.962081	-1.265412	-3.206166
C	4.075608	-0.307647	-2.356047
н	3.019930	-0.421172	-2.602603
н	4.350248	0.737731	-2.516464
н	5.865361	-0.722406	-3.523034
C	4 254897	-1 743065	-4 485445
н	3 316425	-2 250929	-4 223841
н	4 886040	-2.495327	-4 978990
C	3 958271	-0 610342	-5 476488
с ц	3 173702		-6 381/3/
п u	1 880810	0 102540	5 783250
и ц	3 20//13	0 1/6762	-5 0/2160
C	2 1/5152	2 013023	0 202087
U U	1 823368	-2.013923 1 213441	-0.292007
0	1 492620	-1.213441 1.027441	1 56//20
C C	1.403020	-1.02/441	-1.J04439 1 557561
N	0.100551	-1.420079	-1.557501
IN NT	-0.443044	-1.231349	-0.413120
	-1.724990	-0.030000	-0.410052
	-2.342304	-0.031291	-1.504914
0	-1./22982	-0.809420	-2.824498
		-1.210190	
п т	-2.2/8403	-0.024022	-3./3/951
н	0.151138	-1.381/23	-3./30/50
C	1.768022	-3.365818	0.310989
C	1.310356	-4.386139	-0.498981

С	0.998946	-5.647475	0.052929
Ν	1.119625	-5.939826	1.331579
С	1.560411	-4.951434	2.158587
С	1.679508	-5.261914	3.542008
С	2.102853	-4.322945	4.442839
С	2.430946	-3.009525	4.005927
С	2.338492	-2.668404	2.667466
С	1.901415	-3.630563	1.711994
н	1.178691	-4.224424	-1.562981
н	0.639125	-6.444388	-0.597603
н	1.417579	-6.269034	3.850444
н	2.193454	-4.545130	5.501568
0	2.822460	-2.173160	5.002678
С	3.145759	-0.826771	4.669317
Н	3.413327	-0.345599	5.611676
н	3.989566	-0.776068	3.972801
н	2.289512	-0.309795	4.220297
н	2.590835	-1.665512	2.347752
0	-3.639489	-0.231941	-1.575991
С	-4.309627	-0.066275	-0.302887
н	-3.977705	-0.874907	0.350247
С	-3.960424	1.276405	0.319193
C	-3.577477	2.349528	-0.458727
Ċ	-3.294788	3,595655	0.145871
N	-3.375390	3.821005	1.441943
C	-3.756661	2.780197	2.235015
C	-4.065759	1.474857	1.732190
C	-4.454762	0.454066	2.645072
C	-4.528089	0.720829	3,999432
C	-4.224062	2.018048	4.496823
С	-3.848482	3.014508	3.635880
н	-3.610270	4.011749	3,992049
Н	-4.295418	2.183849	5.567212
0	-4.881128	-0.181869	4.954848
С	-5.165477	-1.513425	4.549074
н	-6.025709	-1.549592	3.867780
н	-5.403517	-2.059840	5.463156
н	-4.298856	-1.976482	4.060406
н	-4.687422	-0.535299	2.273469
н	-3.482768	2.240598	-1.533943
H	-2.988668	4.436842	-0.475189
С	-5.834400	-0.215538	-0.511585
н	-6.268171	0.183473	0.412393
С	-6.426281	0.573936	-1.717371
н	-6.831683	1.535897	-1.383210
н	-5.656953	0.794841	-2.463189
С	-6.047912	-2.235244	-1.876954
N	-6.263526	-1.634092	-0.543693
C	-7.710488	-1.666381	-0.251664
н	-7.861069	-1.374280	0.794192
Н	-8.040183	-2.707233	-0.345228
С	-8,506794	-0.734232	-1,219332
н	-8.893036	0.145187	-0.688356
Н	-9.372881	-1.257600	-1.642663
C	-7.543607	-0.292320	-2.340656
H	-4.989474	-2.129740	-2.125625
Н	-6.254710	-3.308123	-1.792526
C	-6.939708	-1.569272	-2.976829
Н	-7.780632	-2.241424	-3.207703
Н	-8.084093	0.285238	-3.100714
С	-6.190758	-1.321756	-4.295905
Н	-5.305431	-0.699739	-4.107064
Н	-6.836737	-0.742154	-4.970659

С	-5.760082	-2.613120	-5.003410				
Η	-6.627112	-3.243148	-5.237466				
Η	-5.078413	-3.207746	-4.383594				
Η	-5.244209	-2.396036	-5.945910				
С	0.204539	2.360604	-0.263405				
С	0.592894	3.479173	0.457982				
Н	0.074140	2.414913	-1.337471				
С	0.994060	4.755192	-0.137240				
Н	-0.317103	1.553836	0.235752				
Η	0.361023	3.502958	1.517197				
С	0.928691	5.924944	0.641217				
С	1.280654	7.161545	0.105900				
С	1.717759	7.252622	-1.217112				
С	1.802321	6.096812	-1.999104				
С	1.444983	4.861467	-1.467139				
Η	0.588434	5.856243	1.671285				
Η	1.216126	8.054306	0.721988				
Η	1.997209	8.215811	-1.635333				
Η	2.154202	6.159168	-3.025436				
Н	1.531506	3.968918	-2.080425				
1	imaginary fre	equency					
Е	= -3038.93452	24					
\mathbf{E}_{d}	$E_{disp} = -0.194968$						
E _M	$_{106-2X} = -3038.3$	11094					

Ruthenium-catalyzed asymmetric transfer hydrogenation of ketones

С	-3.190179	-1.645830	-0.513206
С	-2.837953	-1.270879	-1.831667
С	-1.711468	-1.885352	-2.440390
С	-1.006657	-2.938635	-1.774374
С	-1.450081	-3.375265	-0.487170
С	-2.534247	-2.736552	0.145697
Ru	-0.978232	-1.173448	-0.478175
0	0.655026	-1.439198	0.629267
С	1.554983	-0.354195	0.654051
С	1.593979	0.238470	-0.776640
N	0.156360	0.443286	-1.127204
0	-0.914078	2.196770	0.273507
С	-1.604188	1.409902	1.114839
Н	0.081964	0.656533	-2.123272
Н	1.985061	-0.555280	-1.428816
С	2.459695	1.471114	-0.963234
С	2.916327	-0.818638	1.144673
Н	1.194628	0.445943	1.324019
Η	-0.133739	-3.388850	-2.233013
Η	-1.358860	-1.533658	-3.404975
Η	-3.334639	-0.433564	-2.307749
Н	-3.952154	-1.083677	0.015973
Η	-2.807332	-2.999748	1.160814
Н	-0.873172	-4.120123	0.050463
Н	-1.446904	0.267378	0.830505
Η	-0.333553	1.391727	-0.508597
Н	-1.227602	1.408016	2.157927
С	-3.116142	1.585163	1.112229
С	3.404955	-2.081604	0.787938
С	4.664429	-2.502628	1.214619
С	5.454106	-1.665784	2.006520
С	4.972845	-0.407503	2.371285
С	3.711030	0.010046	1.944844
Н	2.776885	-2.735894	0.191506

Η	5.028910	-3.488026	0.933835			
Н	6.434400	-1.994840	2.341985			
Н	5.576793	0.248859	2.992762			
Н	3.340228	0.990793	2.232727			
С	2.126037	2.710918	-0.393580			
С	2.966104	3.811731	-0.566731			
С	4.147883	3.696373	-1.301912			
С	4.486833	2.468203	-1.870609			
С	3.646300	1.367356	-1.702209			
Н	1.199213	2.815427	0.164305			
Н	2.692365	4.766416	-0.124458			
Н	4.797842	4.557831	-1.432888			
Н	5.403409	2.365193	-2.445951			
Н	3.919463	0.410485	-2.141936			
С	-3.912885	0.960148	2.080760			
С	-5.301309	1.103106	2.060554			
С	-5.909972	1.880697	1.070613			
С	-5.119721	2.516090	0.110149			
С	-3.731085	2.369212	0.131484			
Η	-3.439984	0.362643	2.859261			
Η	-5.907947	0.617163	2.821051			
Н	-6.990532	1.998063	1.056349			
Η	-5.586299	3.134881	-0.652914			
Η	-3.096047	2.870433	-0.592174			
1 imaginary frequency						
Е	= -1344.193980	1				
\mathbf{E}_{d}	$E_{disp} = -0.070320$					
$E_{M06-2X} = -1343.873127$						

С	-4.111729	-0.795331	-0.456974
С	-3.637303	-1.813876	-1.312936
С	-2.837302	-2.854584	-0.762664
С	-2.607233	-2.926523	0.646086
С	-3.192713	-1.945991	1.508996
С	-3.930682	-0.879969	0.965635
Ru	-1.885857	-0.986931	-0.070838
0	-0.404842	-0.657441	1.216199
С	0.824168	-0.273814	0.637388
С	0.997664	-1.116673	-0.651102
N	-0.282651	-0.915630	-1.390386
0	-0.630980	1.416890	-2.182150
С	-1.517257	1.825563	-1.261077
Н	-0.329933	-1.578604	-2.166242
Н	1.034079	-2.166693	-0.327570
С	2.240090	-0.838996	-1.477969
С	1.952794	-0.473365	1.633828
Н	0.804561	0.785912	0.332973
Н	-1.977306	-3.707258	1.056901
Н	-2.373767	-3.585097	-1.418233
Н	-3.769506	-1.731498	-2.385759
Н	-4.610188	0.070136	-0.880291
Н	-4.286988	-0.080661	1.605091
Н	-2.960330	-1.959600	2.568280
Н	-1.723233	0.958352	-0.470803
Н	-0.383905	0.219238	-1.872672
С	-1.124796	3.021264	-0.404700
Н	-2.543207	1.982154	-1.656604
С	1.953857	-1.579097	2.493250
С	3.003634	-1.782006	3.388958
С	4.068491	-0.879365	3.438900
С	4.072368	0.228798	2.590321

С	3.019252	0.430380	1.696677		
Η	1.111900	-2.263943	2.465912		
Н	2.988896	-2.642775	4.053479		
Η	4.885735	-1.035249	4.138650		
Η	4.892803	0.941113	2.626762		
Η	3.023461	1.297681	1.041085		
С	2.381829	0.326640	-2.247658		
С	3.550870	0.551470	-2.976158		
С	4.594992	-0.375052	-2.947398		
С	4.462858	-1.536110	-2.184659		
С	3.292918	-1.764428	-1.459859		
Η	1.568975	1.045636	-2.289117		
Η	3.643258	1.456256	-3.571824		
Η	5.502864	-0.195365	-3.517599		
Η	5.267650	-2.266266	-2.155098		
Η	3.198224	-2.668567	-0.862543		
С	-2.011999	3.530187	0.552571		
С	-1.666327	4.634587	1.329208		
С	-0.424488	5.251483	1.152297		
С	0.460940	4.755770	0.194368		
С	0.112838	3.646475	-0.579473		
Н	-2.982619	3.054966	0.690613		
Η	-2.363374	5.016109	2.071364		
Н	-0.152609	6.113704	1.755786		
Н	1.425039	5.236291	0.045844		
Η	0.785980	3.258180	-1.336321		
1	imaginary fre	quency			
Е	= -1344.19001	8			
\mathbf{E}_{d}	$E_{disp} = -0.070139$				
$E_{M06-2X} = -1343.867832$					

Hetero-Diels-Alder reactions of o-xylylenes with benzaldehyde

С	1.788243	-0.702931	0.734156
С	0.958977	0.057512	1.568833
С	-0.477879	-0.007146	1.418434
С	-1.078619	-0.753774	0.381066
0	1.060930	0.009669	-1.237682
С	-0.188680	0.235753	-1.347522
0	3.101262	-0.499359	0.705947
Н	1.439999	-1.622738	0.281802
0	-2.448775	-0.736315	0.270115
н	-0.598290	-1.663036	0.027244
С	1.525059	0.982693	2.500524
С	-1.267319	0.856810	2.239876
Н	-0.799605	-0.461283	-1.946931
С	-0.735893	1.616919	-1.286127
С	-2.041947	1.885742	-1.721629
С	-2.551684	3.182675	-1.678971
С	-1.759401	4.230336	-1.203398
С	-0.454852	3.971628	-0.773005
С	0.054988	2.675990	-0.816154
Н	-2.654787	1.072592	-2.102775
Н	-3.564691	3.378298	-2.022138
Н	-2.154054	5.242831	-1.173820
Н	0.167336	4.785106	-0.407699
Н	1.069525	2.462890	-0.495518
С	-0.686889	1.696914	3.155520
Н	-2.344127	0.824374	2.121636
Η	-1.315034	2.323484	3.783935
С	0.727671	1.765256	3.292599

H	2.605896	1.022988	2.584006	
Н	1.169016	2.438878	4.021773	
Si	4.179777	-0.953256	-0.556941	
С	5.769873	-1.380611	0.350401	
С	3.464559	-2.429800	-1.475243	
С	4.387808	0.535627	-1.677491	
Н	6.569302	-1.628404	-0.358808	
Η	6.116027	-0.536762	0.958227	
Н	5.635571	-2.240388	1.016615	
Н	4.140028	-2.738861	-2.282411	
Н	3.315460	-3.297478	-0.821416	
Н	2.503725	-2.156371	-1.923837	
Н	4.810804	1.388171	-1.133736	
Н	5.053530	0.310651	-2.520271	
Н	3.409990	0.830883	-2.070954	
Si	-3.439033	-2.057620	-0.097668	
С	-5.173600	-1.340589	-0.157570	
С	-2.946998	-2.791713	-1.765705	
С	-3.274797	-3.361275	1.255821	
Н	-5.914317	-2.115770	-0.388557	
Н	-5.447860	-0.891108	0.803435	
Н	-5.253008	-0.561486	-0.923958	
Н	-3.589610	-3.645370	-2.015734	
Н	-3.045683	-2.054600	-2.570847	
Н	-1.911448	-3.152521	-1.771764	
Н	-3.901470	-4.235622	1.040345	
Н	-2.240941	-3.713441	1.353573	
Н	-3.580756	-2.961698	2.229550	
1 iı	maginary fre	equency		
Е =	-1623.04096	52		
Edisp	= -0.06276	2		
$E_{M06-2x} = -1622.840321$				

2.013169	0.684766	0.426014
1.422015	1.819337	-0.150707
-0.015455	1.908271	-0.267199
-0.864915	0.837503	0.102214
1.148126	-0.874666	-0.853612
-0.037716	-0.676609	-1.277305
3.324900	0.494489	0.346696
1.484910	0.082768	1.155629
-2.217629	0.986273	-0.076625
-0.579042	0.162665	0.904829
2.237807	2.838450	-0.729947
-0.551010	3.055919	-0.932580
-1.094293	-1.709811	-1.091812
-0.191706	-0.032010	-2.158306
0.265157	4.038275	-1.434075
-1.628191	3.131162	-1.026557
-0.174312	4.909624	-1.913631
1.680030	3.932289	-1.338736
3.314500	2.734444	-0.650080
2.311405	4.716220	-1.747209
4.183089	-0.979359	0.569073
5.830478	-0.423652	1.282951
3.233785	-2.070159	1.772327
4.376033	-1.783427	-1.113060
6.505637	-1.277793	1.417275
6.328418	0.290830	0.617513
5.703654	0.059250	2.258548
3.775004	-3.009622	1.939192
	2.013169 1.422015 -0.015455 -0.864915 1.148126 -0.037716 3.324900 1.484910 -2.217629 -0.579042 2.237807 -0.551010 -1.094293 -0.191706 0.265157 -1.628191 -0.174312 1.680030 3.314500 2.311405 4.183089 5.830478 3.233785 4.376033 6.505637 6.328418 5.703654 3.775004	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Н	3.097574	-1.591240	2.749238	
Н	2.248135	-2.320453	1.366335	
Н	4.901413	-2.743880	-1.038843	
Н	3.386563	-1.953199	-1.548728	
Н	4.943798	-1.141110	-1.795920	
Si	-3.415741	0.863205	1.115899	
С	-5.023240	0.708286	0.156597	
С	-3.116284	-0.640075	2.212739	
С	-3.392551	2.435848	2.159651	
Н	-5.887321	0.692560	0.831997	
Н	-5.154156	1.549484	-0.533727	
Н	-5.035148	-0.215631	-0.431408	
Н	-3.947055	-0.756808	2.920434	
Н	-3.042775	-1.560075	1.623177	
Н	-2.198891	-0.546063	2.806157	
Н	-4.138375	2.389414	2.963237	
Н	-2.412491	2.589860	2.626940	
Н	-3.611214	3.321529	1.551882	
С	-2.298411	-1.623128	-1.807340	
С	-3.277860	-2.607240	-1.672621	
С	-3.069429	-3.692822	-0.817744	
С	-1.870013	-3.789594	-0.104703	
С	-0.889547	-2.809222	-0.243847	
Н	-2.460090	-0.779770	-2.473597	
Н	-4.201762	-2.531616	-2.240961	
Н	-3.829721	-4.462928	-0.716444	
Н	-1.696060	-4.639150	0.551390	
Н	0.054750	-2.890294	0.285466	
1 in	maginary freq	quency		
Е =	-1623.040004	ł		
Edisp	= -0.063573			
$E_{M06-2X} = -1622.839260$				

Asymmetric hetero-Diels–Alder reactions of Rawal's diene with aldehydes, catalyzed by a TADDOL derivative

TS – Favored isomer

Coordinates were taken from ref. 30 and not re-optimized. E = -3352.159785 $E_{\rm disp}$ = -0.226120 $E_{\rm M06-2X}$ = -3351.713667

TS – Disfavored isomer

Coordinates were taken from ref. 30 and not re-optimized. E = -3352.157364 $E_{\rm disp}$ = -0.221290 $E_{\rm M06-2X}$ = -3351.708901

Enantioselective acyl transfer catalyzed by DHIPs

TS – Favored isomer

B3LYP coordinates and energy are available from ref. 32. $E_{\rm disp}$ = -0.085677 $E_{\rm M06-2x}$ = -1716.785364

TS – Disfavored isomer

B3LYP coordinates and energy are available from ref. 32. $E_{\rm disp}$ = -0.079190 $E_{\rm M06-2X}$ = -1716.778748

Diastereoselective Diels-Alder reactions of anthracene with aryl-substituted maleic anhydride derivatives – R = Me

С	2.034852	-3.582940	0.696625
С	2.034852	-3.582940	-0.696625
С	-4.256369	-2.590830	-0.696223
С	-4.256369	-2.590830	0.696223
С	1.191167	-2.738996	-1.429722
С	1.191167	-2.738996	1.429722
С	-3.151710	-2.094117	-1.406128
С	-3.151710	-2.094117	1.406128
С	-2.058568	-1.607164	-0.704207
С	-2.058568	-1.607164	0.704207
С	0.345220	-1.892167	-0.702711
С	0.345220	-1.892167	0.702711
Н	2.698333	-4.260381	1.229583
Н	2.698333	-4.260381	-1.229583
Н	-5.117865	-2.969416	-1.239474
н	-5.117865	-2.969416	1.239474
С	1.189579	-2.775709	-2.940400
н	0.219510	-3.094731	-3.342383
Н	1.408869	-1.791972	-3.374171
н	1,943890	-3,475932	-3.312548
C	1,189579	-2.775709	2,940400
н	0.219510	-3.094731	3.342383
н	1,408869	-1.791972	3.374171
н	1,943890	-3.475932	3.312548
н	-3.156778	-2.084620	-2.493217
н	-3.156778	-2.084620	2.493217
C C		-1 025170	_1 303597
C C	-0.760457	-1.025170	1.303597
c c	-0.710350	0 386667	-0 705535
c c	-0.710350	0.386667	0 705535
c c	-1 705081	1 300007	_1 13001/
C C	1 705081	1 300008	1 13001/
0	-2 179/53	2 056602	0 000000
0	2 1121/1	1 667160	2 238637
0	2 113141	1 667169	-2.230037
U U	-2.113141	1 010211	2.230037
u u	0 775095	1 010211	2 303815
n C	4 125070	-1.019211	2.393013
C C	4.125079	-0.490862	0.705167
C C	4.123079	-0.490802	-0.705107
C C	2.143200	0.901105	0.711764
C C	2.143200	0.901103	-0./11/04
C C	2 124622	0.173712	-1.404305
C C	1 117560	1 667725	1 260512
C C	1 117560	1 667725	-1.300312
C C	1.11/500	1.00//35 5 116017	1.300312
C C	-0.234179	5.110017	-0.705211
	-0.234179	2.076056	0.705211
C C	0.605189	2.876056	-0./121/1
0	0.005109	2.8/0000	0./121/1
0	0.197930	4.005625	-1.406360
с п	U.I9/93U	4.003023	1 242074
п 11	4.90/8//	-I.UI0238	1 2429/4
п 17	4.90/8//	-I.UI0238	-1.2429/4
н	3.133003 3.133663	U.1/5911	-2.491620
п 11	3.133003 1.042066	U.I/3911 1 610700	2.491020
п 17	1.043000	1.610700	-2.4449/4
H TT	1.043066	1.019/80	2.4449/4
п	-0.500333	2.331/20	-1.242846

С	-3.909679	1.861523	0.697435
С	-3.909679	1.861523	-0.697435
С	1.993255	4.307365	-0.695711
С	1,993255	4.307365	0.695711
C	-2.732993	1.584219	-1.402915
c c	-2 732993	1 58/219	1 /02015
c	1 216500	2 221200	1 122526
	1.216599	2 221299	-1.433536
C	1.316599	3.321299	1.433536
C	0.629619	2.348790	-0.703823
С	0.629619	2.348790	0.703823
С	-1.562495	1.313415	-0.702779
С	-1.562495	1.313415	0.702779
Η	-4.823786	2.086342	1.240549
Н	-4.823786	2.086342	-1.240549
Н	2.541515	5.080569	-1.228900
Н	2.541515	5.080569	1.228900
С	1.361649	3.311844	-2.944186
н	1,972889	4,137901	-3.320061
н	1,792569	2.376952	-3.322660
н	0 361702	3 414248	-3 384845
C	1 3616/0	3 3119//	2 0//186
с п	1 072000	J. J	2.944100
п 	1.9/2009	4.13/901	3.320001
н	1./92569	2.3/6952	3.322660
Н	0.361702	3.414248	3.384845
H	-2.729315	1.598887	-2.490434
H	-2.729315	1.598887	2.490434
С	-0.172225	1.165690	-1.303764
С	-0.172225	1.165690	1.303764
С	0.538256	-0.055021	-0.705508
С	0.538256	-0.055021	0.705508
С	1.920757	-0.372526	-1.138442
С	1.920757	-0.372526	1.138442
0	2.672138	-0.681452	0.000000
0	2.413594	-0.365624	-2.236132
0	2 413594	-0 365624	2 236132
ч	_0 173759	1 163376	_2 30/13/
11 TT	0 172750	1 162276	2 204124
п	-0.173739	1.000077	2.394134
C a	-4.01////	-1.8882//	0.705329
C	-4.017777	-1.888277	-0.705329
С	-1.600023	-2.017302	0.711894
С	-1.600023	-2.017302	-0.711894
С	-2.826142	-1.924543	-1.404736
С	-2.826142	-1.924543	1.404736
С	-0.324094	-2.120380	-1.360861
С	-0.324094	-2.120380	1.360861
С	2.660354	-4.313469	-0.705304
С	2.660354	-4.313469	0.705304
С	0.687956	-2.908575	-0.712269
Ċ	0.687956	-2,908575	0.712269
c	1,702726	-3.604423	-1.406295
c c	1 702720	-3 601100	1 /06205
с u	1 06120	-J.004423 1 055171	1 2/205/
п п	-4.901284		1.242854
н	-4.961284	-1.8221/1	-1.242854

-2.823443	-1.918351	-2.491852		
-2.823443	-1.918351	2.491852		
-0.286837	-2.038649	-2.445194		
-0.286837	-2.038649	2.445194		
3.424796	-4.867064	-1.243033		
3.424796	-4.867064	1.243033		
1.713188	-3.586005	2.492493		
1.713188	-3.586005	-2.492493		
imaginary fre	equency			
= -1535.72157	76			
$E_{disp} = -0.089695$				
$E_{M06-2x} = -1535.513799$				
	-2.823443 -2.823443 -0.286837 -0.286837 3.424796 3.424796 1.713188 1.713188 imaginary fre = -1535.72157 isp = -0.08969 06-2x = -1535.5	-2.823443 -1.918351 -2.823443 -1.918351 -0.286837 -2.038649 -0.286837 -2.038649 3.424796 -4.867064 3.424796 -4.867064 1.713188 -3.586005 1.713188 -3.586005 imaginary frequency = -1535.721576 isp = -0.089695 06-2x = -1535.513799		

Diastereoselective Diels-Alder reactions of anthracene with aryl-substituted maleic anhydride derivatives – R = OMe

С	1.133359	-3.704773	0.700763
С	1.133359	-3.704773	-0.700763
С	-4.786001	-1.391916	-0.696250
С	-4.786001	-1.391916	0.696250
С	0.508897	-2.678339	-1.411761
С	0.508897	-2.678339	1.411761
С	-3.601649	-1.138781	-1.406487
С	-3.601649	-1.138781	1.406487
С	-2.431148	-0.891186	-0.704513
С	-2.431148	-0.891186	0.704513
С	-0.143059	-1.664549	-0.697042
С	-0.143059	-1.664549	0.697042
Η	1.629527	-4.517087	1.219366
Η	1.629527	-4.517087	-1.219366
Н	-5.707784	-1.581948	-1.239415
Η	-5.707784	-1.581948	1.239415
0	0.466802	-2.582417	-2.779509
0	0.466802	-2.582417	2.779509
С	1.059855	-3.622038	-3.537436
Η	0.900166	-3.359890	-4.585201
Η	2.138610	-3.699135	-3.344223
Η	0.589065	-4.592792	-3.331126
С	1.059855	-3.622038	3.537436
Η	0.900166	-3.359890	4.585201
Η	2.138610	-3.699135	3.344223
Η	0.589065	-4.592792	3.331126
Η	-3.602594	-1.131704	-2.493461
Η	-3.602594	-1.131704	2.493461
С	-1.040310	-0.594699	-1.307618
С	-1.040310	-0.594699	1.307618
С	-0.694055	0.773535	-0.705396
С	-0.694055	0.773535	0.705396
С	-1.439131	1.980801	-1.140435
С	-1.439131	1.980801	1.140435
0	-1.757136	2.726235	0.000000
0	-1.776088	2.335152	-2.238828
0	-1.776088	2.335152	2.238828
H	-1.041105	-0.602692	-2.396716
Н	-1.041105	-0.602692	2.396716
C	3.822723	-1.159551	0.705464
C	3.822723	-1.159551	-0.705464
C	2.202508	0.638551	0.711830
C	2.202508	0.638551	-0.711830
C	3.003019	-0.294241	-1.405784
С	3.003019	-0.294241	1.405784

С	1.376439	1.615784	-1.360998
С	1.376439	1.615784	1.360998
С	0.831382	5.278796	-0.705343
С	0.831382	5.278796	0.705343
С	1.224993	2.889577	-0.712325
С	1.224993	2.889577	0.712325
С	1.002776	4.099764	-1.406389
С	1.002776	4.099764	1.406389
Н	4.469816	-1.847933	1.242183
Η	4.469816	-1.847933	-1.242183
Н	2.990535	-0.300422	-2.492536
Η	2.990535	-0.300422	2.492536
Н	1.289738	1.582217	-2.444883
Η	1.289738	1.582217	2.444883
Н	0.684266	6.211235	-1.242922
Н	0.684266	6.211235	1.242922
Н	0.979020	4.092909	2.492437
Η	0.979020	4.092909	-2.492437
1	imaginary fre	equency	
Е	= -1686.12961	.6	
\mathbf{E}_{d}	$_{isp} = -0.09320$	7	
$E_{M06-2X} = -1685.925391$			

С	-4.257600	0.719629	0.697330
С	-4.257600	0.719629	-0.697330
С	0.958679	4.382690	-0.699235
С	0.958679	4.382690	0.699235
С	-3.048863	0.698598	-1.403317
С	-3.048863	0.698598	1.403317
С	0.507497	3.266577	-1.416482
С	0.507497	3.266577	1.416482
С	0.067934	2.150691	-0.698427
С	0.067934	2.150691	0.698427
С	-1.847847	0.681249	-0.703434
С	-1.847847	0.681249	0.703434
Н	-5.198647	0.746104	1.240491
Н	-5.198647	0.746104	-1.240491
Н	1.317419	5.264366	-1.218101
Н	1.317419	5.264366	1.218101
0	0.457874	3.178131	-2.781155
0	0.457874	3.178131	2.781155
С	0.990138	4.251035	-3.539125
Н	0.432360	5.182419	-3.370485
Н	2.050635	4.418649	-3.309358
Н	0.890471	3.957079	-4.585636
С	0.990138	4.251035	3.539125
Н	0.432360	5.182419	3.370485
Н	2.050635	4.418649	3.309358
Н	0.890471	3.957079	4.585636
Н	-3.047388	0.716440	-2.490617
Н	-3.047388	0.716440	2.490617
С	-0.457038	0.831239	-1.307500
С	-0.457038	0.831239	1.307500
С	0.488891	-0.217510	-0.705938
С	0.488891	-0.217510	0.705938
С	1.907555	-0.261693	-1.140936
С	1.907555	-0.261693	1.140936
0	2.704899	-0.403197	0.000000
0	2.390592	-0.181154	-2.238931
0	2.390592	-0.181154	2.238931
Η	-0.448316	0.848996	-2.396770

Н	-0.448316	0.848996	2.396770
С	-3.601145	-2.962379	0.705303
С	-3.601145	-2.962379	-0.705303
С	-1.210846	-2.576317	0.711803
С	-1.210846	-2.576317	-0.711803
С	-2.428900	-2.744130	-1.404562
С	-2.428900	-2.744130	1.404562
С	0.059220	-2.411506	-1.360269
С	0.059220	-2.411506	1.360269
С	3.425358	-3.957558	-0.705191
С	3.425358	-3.957558	0.705191
С	1.209381	-2.981591	-0.712240
С	1.209381	-2.981591	0.712240
С	2.343820	-3.457415	-1.406345
С	2.343820	-3.457415	1.406345
Н	-4.530215	-3.129719	1.243023
Н	-4.530215	-3.129719	-1.243023
Н	-2.427418	-2.736177	-2.491667
Н	-2.427418	-2.736177	2.491667
Н	0.078800	-2.322463	-2.444474
Н	0.078800	-2.322463	2.444474
Н	4.286562	-4.343996	-1.242877
Н	4.286562	-4.343996	1.242877
Н	2.351001	-3.434377	2.492413
Н	2.351001	-3.434377	-2.492413
1	imaginary fre	equency	
Е	= -1686.12750)9	
E_d	$_{isp} = -0.09131$	0	
$E_{M06-2X} = -1685.921358$			

Diastereoselective Diels–Alder reactions of anthracene with aryl-substituted maleic anhydride derivatives – R = Br

С	1.002588	-3.467126	0.695421
С	1.002588	-3.467126	-0.695421
С	-4.879237	-0.976832	-0.696480
С	-4.879237	-0.976832	0.696480
С	0.391188	-2.418787	-1.386098
С	0.391188	-2.418787	1.386098
С	-3.688545	-0.762057	-1.407610
С	-3.688545	-0.762057	1.407610
С	-2.512021	-0.548343	-0.704033
С	-2.512021	-0.548343	0.704033
С	-0.253177	-1.393632	-0.705349
С	-0.253177	-1.393632	0.705349
Н	1.484185	-4.269631	1.242844
Н	1.484185	-4.269631	-1.242844
Η	-5.806446	-1.138544	-1.239143
Н	-5.806446	-1.138544	1.239143
Br	0.487447	-2.410453	-3.296312
Br	0.487447	-2.410453	3.296312
Η	-3.688990	-0.757433	-2.494356
Н	-3.688990	-0.757433	2.494356
С	-1.114480	-0.290613	-1.306291
С	-1.114480	-0.290613	1.306291
С	-0.714731	1.061632	-0.705139
С	-0.714731	1.061632	0.705139
С	-1.419022	2.292895	-1.140585
С	-1.419022	2.292895	1.140585
0	-1.707712	3.049474	0.00000
0	-1.745698	2.655183	-2.239005

0	-1.745698	2.655183	2.239005		
Н	-1.114728	-0.297747	-2.395595		
Н	-1.114728	-0.297747	2.395595		
С	3.716673	-1.057568	0.705511		
С	3.716673	-1.057568	-0.705511		
С	2.173575	0.805637	0.712056		
С	2.173575	0.805637	-0.712056		
С	2.930851	-0.161967	-1.407390		
С	2.930851	-0.161967	1.407390		
С	1.387258	1.816152	-1.361089		
С	1.387258	1.816152	1.361089		
С	0.981227	5.496621	-0.705315		
С	0.981227	5.496621	0.705315		
С	1.284414	3.094753	-0.712249		
С	1.284414	3.094753	0.712249		
С	1.108057	4.312076	-1.406706		
С	1.108057	4.312076	1.406706		
Η	4.332053	-1.773820	1.242793		
Η	4.332053	-1.773820	-1.242793		
Η	2.906211	-0.180557	-2.493461		
Η	2.906211	-0.180557	2.493461		
Н	1.300238	1.786612	-2.445118		
Η	1.300238	1.786612	2.445118		
Н	0.870079	6.434010	-1.242758		
Η	0.870079	6.434010	1.242758		
Η	1.085454	4.306575	2.492746		
Н	1.085454	4.306575	-2.492746		
1	imaginary free	quency			
Е	= -6599.299151	L			
$E_{disp} = -0.093439$					
$E_{M06-2x} = -6604.047904$					

С	4.295975	-0.336155	0.697546
С	4.295975	-0.336155	-0.697546
С	-0.861447	-4.069663	-0.694298
С	-0.861447	-4.069663	0.694298
С	3.088165	-0.324643	-1.404388
С	3.088165	-0.324643	1.404388
С	-0.431412	-2.933161	-1.392117
С	-0.431412	-2.933161	1.392117
С	-0.008341	-1.804897	-0.706822
С	-0.008341	-1.804897	0.706822
С	1.887794	-0.313476	-0.702724
С	1.887794	-0.313476	0.702724
H	5.237209	-0.357103	1.240198
Н	5.237209	-0.357103	-1.240198
H	-1.196624	-4.944179	-1.240705
Н	-1.196624	-4.944179	1.240705
H	3.086824	-0.345285	-2.491390
Н	3.086824	-0.345285	2.491390
Br	-0.446172	-2.977574	-3.302641
Br	-0.446172	-2.977574	3.302641
С	0.498401	-0.473757	-1.305592
С	0.498401	-0.473757	1.305592
С	-0.464083	0.558708	-0.705573
С	-0.464083	0.558708	0.705573
С	-1.883955	0.575350	-1.141059
С	-1.883955	0.575350	1.141059
0	-2.682760	0.705162	0.000000
0	-2.362088	0.480675	-2.239282
0	-2.362088	0.480675	2.239282

Н	0.491782	-0.490192	-2.395102		
Н	0.491782	-0.490192	2.395102		
С	3.591697	3.343875	0.705346		
С	3.591697	3.343875	-0.705346		
С	1.205848	2.933348	0.711796		
С	1.205848	2.933348	-0.711796		
С	2.421918	3.113651	-1.404954		
С	2.421918	3.113651	1.404954		
С	-0.062183	2.754646	-1.360643		
С	-0.062183	2.754646	1.360643		
С	-3.452095	4.245584	-0.705230		
С	-3.452095	4.245584	0.705230		
С	-1.220962	3.306208	-0.712270		
С	-1.220962	3.306208	0.712270		
С	-2.362813	3.763230	-1.406824		
С	-2.362813	3.763230	1.406824		
Η	4.518813	3.521896	1.242872		
Η	4.518813	3.521896	-1.242872		
Η	2.420552	3.106738	-2.492020		
Η	2.420552	3.106738	2.492020		
Η	-0.080621	2.665423	-2.444878		
Η	-0.080621	2.665423	2.444878		
Η	-4.319470	4.618012	-1.242659		
Η	-4.319470	4.618012	1.242659		
Η	-2.369743	3.740623	2.492847		
Η	-2.369743	3.740623	-2.492847		
1 imaginary frequency					
Ε	= -6599.293837				
$E_{disp} = -0.089938$					
$E_{M06-2X} = -6604.041700$					

Enantioselective Claisen rearrangements catalyzed by chiral guanidinium salts

TS – Favored isomer

B3LYP coordinates and energy are available from ref. 36. $E_{\rm disp}$ = -0.146417 $E_{\rm M06-2X}$ = -2131.883994

TS – Disfavored isomer

B3LYP coordinates and energy are available from ref. 36. $E_{\rm disp}$ = -0.147797 $E_{\rm M06-2X}$ = -2131.879479

Citation for Gaussian 09

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.