Statistics
Research Article in Medicine

Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

Supplementary Material to Augmented GEE for
improving efficiency and validity of estimation in
cluster randomized trials by leveraging cluster-
and individual-level covariates

Alisa J. Stephens®, Eric J. Tchetgen Tchetgen, and Victor De Gruttola

Appendix A: B Solutions for Standard and Augmented Logistic GEE in cluster randomized
designs

Let Y;; denote the response (0 or 1) for the j;;, individual in the 4y, cluster. Y; = (Y;1, Yo, ..., Yin.) T, where n; is the
number of subjects within the i, cluster. A typical model for binary data is E(Y;;|4;) = g(4;; 8) = g(Bo + $14;), where
g is the inverse logit link function. The standard GEE for the marginal treatment effect are given by
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where bold g(A;; ) denotes the n;-dimensional link function for the outcome vector Y;, Dj is the n; x p matrix defined
by %, and Vj is a n; x n; working covariance matrix for Yj.

D; is composed of the n;-dimensional columns 51‘.0 = %ﬁ:ﬁ) and l_)'i_l = %ﬂfﬁ). Because of the cluster-randomized

design, li-,o and ﬁi‘l are vectors of the form l_)'i’p = (Di,, D, ... ,Dip)T for p = 0,1 (intercept and treatment effect),
with
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Dy = op1 (14 exp(Bo + B1d;)) (1 (1 + exp(Bo + BlAi))> = m(A){1 = m(Ai)} 4,

where m(A;) = E(Y;;]A;). We recall that D; is evaluated using an initial estimator Bmit, usually obtained from standard
logistic regression that does not account for clustering.

The inverse working covariance matrix V; ' can be broken down into its columns and scalar elements. Let V; ' =
S 1 e S S . . _ _ .
[ Vii2o Vi, ooV } , where V/ jl is the j;, column of V; !, and V,L-q ]1 represents the scalar element in the g;, row,

Jen, column. Using this construction, after some matrix algebra, a closed form solution for 8 under a cluster randomized
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design is given by
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This solution can be simplified using the working covariance structure. Under exchangeable correlation, V; = ¢ and
Vi,, = p for ¢ # j. We note working independence as a special case with off-diagonal elements p = 0. Proceeding, let

¢! and p~! denote the diagonal and off-diagonal elements of V; ™', respectively. The above simplifies to

)
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In the case of the augmented GEE, we estimate B using the augmented estimating equations

m

3DV Y - g4 8)) - (A - mA(X)] =0,

i=1

where 4(X;) = [D;(1)TVi(1) 7 { f1(Xs;%) — 8)} — Di( 0)~H{ fo(Xi;70) — g(0; 8) }].
Above, we take Dj(k) = G%A‘Tﬁ), Vi(k) = V1 evaluated under treatment k, and fi(Xi;7g) = E[Yi]|A; = k,X|] for
k =0, 1. Vectors ﬁi_p (k). ‘7 (k), and scalars D;  (k), qujl(k) are defined similarly as above, evaluated under treatment

k. For brevity, we write Fy, below, where Fy,, = f1.(Xj; i ). Solutions for Bo and Bl are given by
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The simplified expression in case of exchangeable structure is

By = logit < [(1 —) ZDio (0){nip~" + ni(n; — 1)051}1 X
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where we maintian the index i in D; (k) to be consistent with the unsimplified expressions above, in which the

index 7 on D},p(kj) is retained to be mindful of varying cluster size. The quantity D;, (k), however, is a fixed function

j=1 j=1

)

Appendix B: Variance Estimators

Let Y; be the n;-dimensional response vector, A; the scalar treatment variable, and X; a collection of baseline covariates
potentially at the cluster and individual level. The model E(Y;|A;) = g(A;; ) is assumed, and the estimator J3 is
obtained by solving the augmented estimating equations detailed in Section 2. Recall that V; is a working covariance
matrix as typically used in GEE for estimating coefficients in restricted moment models and 7=P(A; = 1). Formulas
for the variance estimators discussed in section 3 are presented below. The asymptotic variability of Baug is shown to

be var (Baug) = D" TAI1", where I' = E [W] and A = E [1;, (Y, A,X; 3)®2], with U2 = UUT. In

each of the below, I'=m! 3 i DiTVilei. The four variance estimators considered are:

1. vary (Baug) = DTAT 1" where A = m~ Zw

i=1 o
(d/}iopt(Y7A7X;ﬂ) :DiTVi_l{Y' - i;Baug)}
_(Ai_ﬂ-) [Dl( 1{fl 17771 (1 Bauq } D 1{f0 lano (OaBauq)}]

2. vdrg(Baug):FflA*fflT, where A* =m~ 12 H;¢;)®2, and H; is a diagonal matrix with H;, =
i=1

, —1/2
[1 _ min{q, (W x r)jj}] 1, and ¢ = 0s(Y, A, X; §) is as defined in 1).

3. vars(Baug) = T AT 1" where A = m~ Zw

i=1

lopt ’

qz)iopt :DiTVi_l{Yi - g(Am Baug)}

—(A; =) [Di(l)TVi(l)l{fl(Xi; i) — 8(1; Baug) } — Di(0)TVi(0) " fo(Xis0) — g(0; Baug)}]
—(A; — ) [Di(l)TVi(l)_l{f{(Xi; i) G (Yi, X)) — Di(0)"Vi(0) ~H{ (X 10) J o (Y, Xis ﬁo)] :

Cu(Yi,X5:9) is the first order approximation of the term (7, —n*) that results from estimation of 7 in

E(Y;|X;, A;). If E(Y;]X, 4;) is estimated by linear regression, (k (Y3, X5;7) (Z X;TX; ) Z XiT(Yi —
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Xifk). For nonlinear models, in which E(Y;|X;, 4;) = u(Xi;nk), (G —n;) may be approximated by
m -1
(Z F;"W;'F; Z FiTWfl(Yi — u(X5; 7)), where Fy = %ﬁ?n) K and W;j is a diagonal matrix
i=1 i=1 M=k
with Wy, =¢,,v(p), following from generalized linear model theory. The function v(12) denotes the variance function
and ¢, the dispersion parameter. We include the subscript  in ¢,, to distinguish from ¢ involved in characterizing
V(Yi;|A;) in the main text.
4. v&m(ﬁaw) =T 'A*T-1", where A* = m~! ZI(HI@,)‘8 2 with ) and H; are as defined above.
In 2) and 4), the lower bound q is typically set to 0.75 to prevent gross inflation [1].

Appendix C: Additional Simulations

Table 1. Standard vs. Augmented GEE, Binary Outcome: 250 clusters, low and high association,p = 0.05. Std:

unaugmented. Correlation is exchangeable for all estimators. C,F,0,W: augmentation with 'Correct’, Forward’ selected,

'One-variable’, or "'Wrong’ model. ML, OLS: augmentation fit with maximum likelihood or ordinary least squares. SE:

average unadjusted sandwich. MC RE: square of the Monte Carlo SE of the Std(Exch) estimator divided by the Monte
Carlo SE for the indicated estimator. Coverage: coverage based on unadjusted sandwich SE.

Estimator B Bias SE MCSE MCRE Coverage
m=250, low Std -0.3036  0.0077 0.0739 0.0778  1.0000 0.936
C-ML -0.3029 0.0069 0.0705 0.0744 1.0951 0.935
C-OLS -0.3032 0.0072 0.0710 0.0750 1.0778 0.937
F-ML  -0.3023 0.0064 0.0701 0.0753 1.0683 0.935
F-OLS -0.3026 0.0066 0.0703 0.0757 1.0571 0.937
O-ML -0.3033 0.0073 0.0717 0.0752 1.0704 0.937
O-OLS -0.3033 0.0073 0.0717 0.0754 1.0658 0.935
W-ML -0.3034 0.0075 0.0728 0.0768 1.0271 0.938
W-OLS -0.3035 0.0075 0.0728 0.0768  1.0258 0.938
m=250, high Std 1.1310  0.0052 0.0567 0.0576  1.0000 0.943
C-ML 1.1314  0.0047 0.0489 0.0497 1.3429 0.940
C-OLS 1.1313 0.0049 0.0496 0.0505 1.2989 0.943
F-ML 1.1314 0.0047 0.0485 0.0502 1.3156 0.937
F-OLS 1.1314 0.0048 0.0491 0.0510 1.2719 0.941
O-ML 1.1312 0.0050 0.0501 0.0509 1.2799 0.934
O-OLS 1.1313 0.0048 0.0506 0.0512 1.2651 0.941
W-ML 11310 0.0051 0.0531 0.0542 1.1301 0.938
W-OLS 1.1310 0.0051 0.0533 0.0542 1.1266 0.937
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Table 2. Standard vs. Augmented GEE, Binary Outcome: 250 clusters, low and high association, p = 0.05. Std:

unaugmented. Correlation is exchangeable for all estimators. C,F,O,W: augmentation with ’Correct’, Forward’ selected,

"One-variable’, or "Wrong’ model. ML, OLS: augmentation fit with maximum likelihood or ordinary least squares. SE:

average unadjusted sandwich. MC RE: square of the Monte Carlo SE of the Std(Exch) estimator divided by the Monte
Carlo SE for the indicated estimator. Coverage: coverage based on unadjusted sandwich SE.

Estimator B Bias SE MCSE MCRE Coverage
m=250, low Std -0.2299 0.0135 0.1164 0.1190 1.0000 0.938
C-ML -0.2290 0.0126 0.1144 0.1173 1.0293 0.936
C-OLS -0.2293 0.0129 0.1146 0.1175 1.0256 0.935
F-ML -0.2276 0.0112 0.1135 0.1185 1.0077 0.932
F-OLS -0.2280 0.0116 0.1135 0.1187 1.0041 0.933
O-ML -02294 0.0130 0.1150 0.1175 1.0253 0.935
O-OLS -0.2295 0.0130 0.1150 0.1176 1.0234 0.935
W-ML -0.2296 0.0131 0.1155 0.1188  1.0020 0.931
W-OLS -0.2297 0.0132 0.1155 0.1188 1.0021 0.932
m=250, high Std 1.0429 0.0072 0.0883 0.0887  1.0000 0.944
C-ML 1.0436  0.0065 0.0835 0.0848 1.0936 0.949
C-OLS 1.0435 0.0066 0.0839 0.0851 1.0871 0.948
F-ML 1.0442  0.0059 0.0828 0.0858 1.0694 0.938
F-OLS 1.0444 0.0058 0.0831 0.0860 1.0643 0.941
O-ML 1.0433 0.0068 0.0842 0.0851 1.0863 0.951
O-OLS 1.0435 0.0067 0.0844 0.0851 1.0861 0.949
W-ML 1.0431 0.0070 0.0859 0.0869 1.0409 0.951
W-OLS 1.0431 0.0070 0.0860 0.0869 1.0406 0.950
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