Received XXXX

(www.interscience.wiley.com) DOI: 10.1002/sim.0000

Supplementary Material to Augmented GEE for improving efficiency and validity of estimation in cluster randomized trials by leveraging clusterand individual-level covariates

Alisa J. Stephens*, Eric J. Tchetgen Tchetgen, and Victor De Gruttola

Appendix A: $\hat{\beta}$ Solutions for Standard and Augmented Logistic GEE in cluster randomized designs

Let Y_{ij} denote the response (0 or 1) for the j_{th} individual in the i_{th} cluster. $\mathbf{Y_i} = (Y_{i1}, Y_{i2}, ..., Y_{in_i})^{\mathrm{T}}$, where n_i is the number of subjects within the i_{th} cluster. A typical model for binary data is $E(Y_{ij}|A_i) = g(A_i;\beta) = g(\beta_0 + \beta_1 A_i)$, where g is the inverse logit link function. The standard GEE for the marginal treatment effect are given by

$$\sum_{i=1}^{m} \psi_i(\mathbf{Y}, A; \beta) = \sum_{i=1}^{m} \mathbf{D_i}^{\mathrm{T}} \mathbf{V_i}^{-1} \{ \mathbf{Y_i} - \mathbf{g}(A_i; \beta) \} = \mathbf{0},$$
(1)

where bold $\mathbf{g}(A_i;\beta)$ denotes the n_i -dimensional link function for the outcome vector $\mathbf{Y_i}$, $\mathbf{D_i}$ is the $n_i \times p$ matrix defined by $\frac{\partial \mathbf{g}(A_i;\beta)}{\partial \beta^{\mathrm{T}}}$, and $\mathbf{V_i}$ is a $n_i \times n_i$ working covariance matrix for $\mathbf{Y_i}$.

 $\vec{D_i}$ is composed of the n_i -dimensional columns $\vec{D}_{i.0} = \frac{\partial \mathbf{g}(A_i;\beta)}{\partial \beta_0}$ and $\vec{D}_{i.1} = \frac{\partial \mathbf{g}(A_i;\beta)}{\partial \beta_1}$. Because of the cluster-randomized design, $\vec{D}_{i.0}$ and $\vec{D}_{i.1}$ are vectors of the form $\vec{D}_{i.p} = (D_{i_p}, D_{i_p}, \dots, D_{i_p})^{\mathrm{T}}$ for p = 0, 1 (intercept and treatment effect), with

$$D_{i_0} = \frac{\partial g(A_i; \beta)}{\partial \beta_0} = \frac{\exp(\beta_0 + \beta_1 A_i)}{(1 + \exp(\beta_0 + \beta_1 A_i))} \left(1 - \frac{\exp(\beta_0 + \beta_1 A_i)}{(1 + \exp(\beta_0 + \beta_1 A_i))} \right) = \pi(A_i) \{ 1 - \pi(A_i) \}$$

$$D_{i_1} = \frac{\partial g(A_i; \beta)}{\partial \beta_1} = \frac{\exp(\beta_0 + \beta_1 A_i) A_i}{(1 + \exp(\beta_0 + \beta_1 A_i))} \left(1 - \frac{\exp(\beta_0 + \beta_1 A_i) A_i}{(1 + \exp(\beta_0 + \beta_1 A_i))} \right) = \pi(A_i) \{ 1 - \pi(A_i) \} A_i,$$

where $\pi(A_i) = E(Y_{ij}|A_i)$. We recall that $\mathbf{D_i}$ is evaluated using an initial estimator $\hat{\beta}_{init}$, usually obtained from standard

logistic regression that does not account for clustering. The inverse working covariance matrix ${\bf V_i}^{-1}$ can be broken down into its columns and scalar elements. Let ${\bf V_i}^{-1}=$ $\left[\begin{array}{ccc} \vec{V}_{i.1}^{-1} & \vec{V}_{i.2}^{-1} & \cdots & \vec{V}_{i.n_i}^{-1} \end{array}\right]$, where $\vec{V}_{i.j}^{-1}$ is the j_{th} column of $\mathbf{V_i}^{-1}$, and $V_{i_{q,j}}^{-1}$ represents the scalar element in the q_{th} row, j_{th} column. Using this construction, after some matrix algebra, a closed form solution for β under a cluster randomized

Statistics in Medicine

design is given by

$$\hat{\beta}_{0} = logit \left(\left[\sum_{i=1}^{m} \left\{ I(A_{i} = 0) D_{i_{0}} \sum_{q,j \leq n_{i}} V_{i_{q,j}}^{-1} \right\} \right]^{-1} \left[\sum_{i=1}^{m} \left\{ (\vec{D}_{i_{0}} - \vec{D}_{i_{1}})^{\mathrm{T}} \sum_{j=1}^{n_{i}} (\vec{V}_{i_{.j}}^{-1} Y_{ij}) \right\} \right] \right)$$

$$\hat{\beta}_{1} = logit \left(\left[\sum_{i=1}^{m} \left\{ I(A_{i} = 1) D_{i_{1}} \sum_{q,j \leq n_{i}} V_{i_{q,j}}^{-1} \right\} \right]^{-1} \left[\sum_{i=1}^{m} \left\{ \vec{D}_{i_{1}}^{\mathrm{T}} \sum_{j=1}^{n_{i}} (\vec{V}_{i_{.j}}^{-1} Y_{ij}) \right\} \right] \right) - \hat{\beta}_{0}$$

This solution can be simplified using the working covariance structure. Under exchangeable correlation, $V_{i_{q,q}} = \phi$ and $V_{i_{q,j}} = \rho$ for $q \neq j$. We note working independence as a special case with off-diagonal elements $\rho = 0$. Proceeding, let ϕ^{-1} and ρ^{-1} denote the diagonal and off-diagonal elements of $\mathbf{V_i}^{-1}$, respectively. The above simplifies to

$$\hat{\beta}_{0} = logit \left(\left[\sum_{i=1}^{m} D_{i_{0}} I(A_{i} = 0) \left\{ n_{i} \phi^{-1} + n_{i} (n_{i} - 1) \rho^{-1} \right\} \right]^{-1} \times \left[\sum_{i=1}^{m} \left\{ (D_{i_{0}} - D_{i_{1}}) \left\{ (n_{i} - 1) \rho_{i}^{-1} + \phi^{-1} \right\} \sum_{j=1}^{n_{i}} Y_{ij} \right\} \right] \right)$$

$$\hat{\beta}_{1} = logit \left(\left[\sum_{i=1}^{m} I(A_{i} = 1) D_{i_{1}} \left\{ n_{i} \phi^{-1} + n_{i} (n_{i} - 1) \rho_{1}^{-1} \right\} \right]^{-1} \times \left[\sum_{i=1}^{m} \left\{ D_{i_{1}} \left\{ (n_{i} - 1) \rho^{-1} + \phi^{-1} \right\} \sum_{j=1}^{n_{i}} Y_{ij} \right\} \right] \right) - \hat{\beta}_{0}$$

In the case of the augmented GEE, we estimate $\hat{\beta}$ using the augmented estimating equations

$$\sum_{i=1}^{m} \left[\mathbf{D_i}^{\mathrm{T}} \mathbf{V_i}^{-1} \left\{ \mathbf{Y_i} - \mathbf{g}(A_i; \beta) \right\} - (A_i - \pi) \hat{\gamma}(\mathbf{X_i}) \right] = \mathbf{0},$$

where $\hat{\gamma}(X_i) = \left[\mathbf{D_i}(1)^{\mathrm{T}}\mathbf{V_i}(1)^{-1}\left\{f_1(\mathbf{X_i}; \hat{\eta}_1) - \mathbf{g}(1; \beta)\right\} - \mathbf{D_i}(0)^{\mathrm{T}}\mathbf{V_i}(0)^{-1}\left\{f_0(\mathbf{X_i}; \hat{\eta}_0) - \mathbf{g}(0; \beta)\right\}\right].$

Above, we take $\mathbf{D_i}(k) = \frac{\partial \mathbf{g}(k;\hat{\boldsymbol{\beta}})}{\partial \boldsymbol{\beta}^T}$, $\mathbf{V_i}(k) = \mathbf{V_i}$ evaluated under treatment k, and $f_k(\mathbf{X_i};\hat{\eta}_k) = \hat{E}[\mathbf{Y_i}|A_i = k,\mathbf{X_i}]$ for k = 0, 1. Vectors $\vec{D}_{i,p}(k)$, $\vec{V}_{i,j}^{-1}(k)$, and scalars $D_{i_p}(k)$, $V_{q,j}^{-1}(k)$ are defined similarly as above, evaluated under treatment k. For brevity, we write \mathbf{F}_{k_i} below, where $\mathbf{F}_{k_i} = f_k(\mathbf{X_i};\hat{\eta}_k)$. Solutions for $\hat{\beta}_0$ and $\hat{\beta}_1$ are given by

$$\begin{split} \hat{\beta}_0 &= logit \Biggl(\Biggl[(1-\pi) \sum_{i=1}^m \Biggl\{ D_{i_0}(0) \sum_{q,j \leq n_i} V_{i_q,j}^{-1}(0) \Biggr\} \Biggr]^{-1} \times \\ & \sum_{i=1}^m \Biggl[\sum_{j=1}^{n_i} \Biggl\{ (\vec{D}_{i_{\cdot 0}} - \vec{D}_{i_{\cdot 1}})^{\mathrm{T}} V_{i_{\cdot j}}^{-1} Y_{ij} - (A_i - \pi) \left(-\vec{D}_{i_{\cdot 0}}(0) \vec{V}_{i_{\cdot j}}^{-1}(0) F_{0_{ij}} \right) \Biggr\} \Biggr] \Biggr) \\ \hat{\beta}_1 &= logit \Biggl(\Biggl[\pi \sum_{i=1}^m \Biggl\{ D_{i_1}(1) \sum_{q,j \leq n_i} V_{i_{q,j}}^{-1}(1) \Biggr\} \Biggr]^{-1} \times \\ & \sum_{i=1}^m \Biggl[\sum_{j=1}^{n_i} \Biggl\{ (\vec{D}_{i_{\cdot 1}}^{\mathrm{T}} V_{i_{\cdot j}}^{-1} Y_{ij}) - (A_i - \pi) \left(\vec{D}_{i_{\cdot 1}}(1)^{\mathrm{T}} \vec{V}_{i_{\cdot j}}^{-1}(1) F_{1_{ij}} \right) \Biggr\} \Biggr] \Biggr) - \hat{\beta}_0, \end{split}$$

The simplified expression in case of exchangeable structure is

$$\hat{\beta}_{0} = logit \left(\left[(1 - \pi) \sum_{i=1}^{m} D_{i_{0}}(0) \{ n_{i} \phi^{-1} + n_{i} (n_{i} - 1) \rho_{0}^{-1} \} \right]^{-1} \times \right)$$

$$\sum_{i=1}^{m} \left[(D_{i_{0}} - D_{i_{1}}) \{ (n_{i} - 1) \rho_{i}^{-1} + \phi_{i}^{-1} \} \sum_{j=1}^{n_{i}} Y_{ij} - (A_{i} - \pi) \left\{ -D_{i_{1}}(0) \{ (n_{i} - 1) \rho_{0}^{-1} + \phi_{0}^{-1} \} \sum_{j=1}^{n_{i}} F_{0_{ij}} \right\} \right] \right)$$

$$\hat{\beta}_{1} = logit \left(\left[\pi \sum_{i=1}^{m} \left\{ D_{i_{1}}(1) \{ n_{i} \phi_{1}^{-1} + n_{i} (n_{i} - 1) \rho_{1}^{-1} \} \right\} \right]^{-1} \times \right]$$

$$\sum_{i=1}^{m} \left[D_{i_{1}} \{ (n_{i} - 1) \rho_{i}^{-1} + \phi_{i}^{-1} \} \sum_{j=1}^{n_{i}} Y_{ij} - (A_{i} - \pi) \left\{ D_{i_{1}}(1) \{ (n_{i} - 1) \rho_{1}^{-1} + \phi_{1}^{-1} \} \sum_{j=1}^{n_{i}} F_{1_{ij}} \right\} \right] \right) - \hat{\beta}_{0},$$

where we maintian the index i in $D_{i_p}(k)$ to be consistent with the unsimplified expressions above, in which the index i on $\vec{D}_{i_p}(k)$ is retained to be mindful of varying cluster size. The quantity $D_{i_p}(k)$, however, is a fixed function of $E(Y_{ij}|A_i=k)$.

Appendix B: Variance Estimators

Let $\mathbf{Y_i}$ be the n_i -dimensional response vector, A_i the scalar treatment variable, and $\mathbf{X_i}$ a collection of baseline covariates potentially at the cluster and individual level. The model $E(\mathbf{Y_i}|A_i) = \mathbf{g}(A_i;\beta)$ is assumed, and the estimator $\hat{\beta}$ is obtained by solving the augmented estimating equations detailed in Section 2. Recall that $\mathbf{V_i}$ is a working covariance matrix as typically used in GEE for estimating coefficients in restricted moment models and $\pi = P(A_i = 1)$. Formulas for the variance estimators discussed in section 3 are presented below. The asymptotic variability of $\hat{\beta}_{aug}$ is shown to be $var(\hat{\beta}_{aug}) = \Gamma^{-1}\Delta\Gamma^{-1}$, where $\Gamma = E\left[\frac{\partial \psi_{iopt}(\mathbf{Y}, A, \mathbf{X}; \beta)}{\partial \beta^{\mathrm{T}}}\right]$, and $\Delta = E\left[\psi_{iopt}(\mathbf{Y}, A, \mathbf{X}; \beta)^{\bigotimes 2}\right]$, with $U^{\bigotimes 2} = UU^{\mathrm{T}}$. In each of the below, $\hat{\Gamma} = m^{-1}\sum_{i}\mathbf{D_i}^{\mathrm{T}}\mathbf{V_i}^{-1}\mathbf{D_i}$. The four variance estimators considered are:

1.
$$v\hat{a}r_1(\hat{\beta}_{aug}) = \hat{\Gamma}^{-1}\hat{\Delta}\hat{\Gamma}^{-1^{\mathrm{T}}}$$
, where $\hat{\Delta} = m^{-1}\sum_{i=1}^{m}\hat{\psi}_{i_{opt}}^{\bigotimes 2}$, and
$$\hat{\psi}_{i_{opt}}(\mathbf{Y}, A, \mathbf{X}; \beta) = \mathbf{D_i}^{\mathrm{T}}\mathbf{V_i}^{-1}\left\{\mathbf{Y_i} - \mathbf{g}(A_i; \hat{\beta}_{aug})\right\} - (A_i - \pi)\left[\mathbf{D_i}(1)^{\mathrm{T}}\mathbf{V_i}(1)^{-1}\left\{f_1(\mathbf{X_i}; \hat{\eta}_1) - \mathbf{g}(1; \hat{\beta}_{aug})\right\} - \mathbf{D_i}(0)^{\mathrm{T}}\mathbf{V_i}(0)^{-1}\left\{f_0(\mathbf{X_i}; \hat{\eta}_0) - \mathbf{g}(0; \hat{\beta}_{aug})\right\}\right]$$

2.
$$v\hat{a}r_2(\hat{\beta}_{aug}) = \hat{\Gamma}^{-1}\hat{\Delta}^*\hat{\Gamma}^{-1^{\mathrm{T}}}$$
, where $\hat{\Delta}^* = m^{-1}\sum_{i=1}^m (\mathbf{H_i}\hat{\psi}_i)^{\bigotimes 2}$, and $\mathbf{H_i}$ is a diagonal matrix with $H_{ijj} = \left[1 - min\{q, (\frac{\partial \psi_i(\mathbf{Y_i}, A, \mathbf{X_i}; \beta)}{\partial \beta^{\mathrm{T}}} \times \hat{\Gamma})_{jj}\}\right]^{-1/2}$ [1], and $\hat{\psi}_i = \hat{\psi}_i(\mathbf{Y}, A, \mathbf{X}; \beta)$ is as defined in 1).

3.
$$v\hat{a}r_3(\hat{\beta}_{aug}) = \hat{\Gamma}^{-1}\tilde{\Delta}\hat{\Gamma}^{-1}$$
, where $\tilde{\Delta} = m^{-1}\sum_{i=1}^m \tilde{\psi}_{i_{opt}}^{\bigotimes 2}$, and

$$\begin{split} \tilde{\psi}_{i_{opt}} = & \mathbf{D_i}^{\mathrm{T}} \mathbf{V_i}^{-1} \left\{ \mathbf{Y_i} - \mathbf{g}(A_i; \hat{\beta}_{aug}) \right\} \\ & - (A_i - \pi) \left[\mathbf{D_i} (1)^{\mathrm{T}} \mathbf{V_i} (1)^{-1} \left\{ f_1(\mathbf{X_i}; \hat{\eta}_1) - \mathbf{g}(1; \hat{\beta}_{aug}) \right\} - \mathbf{D_i} (0)^{\mathrm{T}} \mathbf{V_i} (0)^{-1} \left\{ f_0(\mathbf{X_i}; \hat{\eta}_0) - \mathbf{g}(0; \hat{\beta}_{aug}) \right\} \right] \\ & - (A_i - \pi) \left[\mathbf{D_i} (1)^{\mathrm{T}} \mathbf{V_i} (1)^{-1} \left\{ f_1'(\mathbf{X_i}; \hat{\eta}_1) \right\} \hat{\zeta}_1(\mathbf{Y_i}, \mathbf{X_i}; \hat{\eta}_1) - \mathbf{D_i} (0)^{\mathrm{T}} \mathbf{V_i} (0)^{-1} \left\{ f_0'(\mathbf{X_i}; \hat{\eta}_0) \right\} \hat{\zeta}_0(\mathbf{Y_i}, \mathbf{X_i}; \hat{\eta}_0) \right]. \end{split}$$

 $\hat{\zeta}_k(\mathbf{Y_i}, \mathbf{X_i}; \hat{\eta})$ is the first order approximation of the term $(\hat{\eta}_k - \eta^*)$ that results from estimation of η_k in $E(\mathbf{Y_i}|\mathbf{X_i}, A_i)$. If $E(\mathbf{Y_i}|\mathbf{X_i}, A_i)$ is estimated by linear regression, $\hat{\zeta}_k(\mathbf{Y_i}, \mathbf{X_i}; \hat{\eta}) = \left(\sum_{i=1}^m \mathbf{X_i}^T \mathbf{X_i}\right)^{-1} \sum_{i=1}^m \mathbf{X_i}^T (\mathbf{Y_i} - \mathbf{X_i}^T \mathbf{X_i})$

$$\begin{split} \mathbf{X_i}\hat{\eta}_k). & \text{ For nonlinear models, in which } E(\mathbf{Y_i}|\mathbf{X_i},A_i) = \mu(\mathbf{X_i};\eta_k), \ (\hat{\eta}_k - \eta_k^*) \text{ may be approximated by } \\ \left(\sum_{i=1}^m \mathbf{F_i}^{\mathrm{T}} \mathbf{W_i}^{-1} \mathbf{F_i}\right)^{-1} \sum_{i=1}^m \mathbf{F_i}^{\mathrm{T}} \mathbf{W_i}^{-1} (\mathbf{Y_i} - \mu(\mathbf{X_i};\hat{\eta}_k)), \text{ where } \mathbf{F_i} = \frac{\partial \mu_k(\mathbf{X_i};\eta)}{\partial \eta} \bigg|_{\eta_k = \hat{\eta}_k}, \text{ and } \mathbf{W_i} \text{ is a diagonal matrix } \\ \text{with } W_{i_{jj}} = \phi_\mu \nu(\mu), \text{ following from generalized linear model theory. The function } \nu(\mu) \text{ denotes the variance function } \\ \text{and } \phi_\mu \text{ the dispersion parameter. We include the subscript } \mu \text{ in } \phi_\mu \text{ to distinguish from } \phi \text{ involved in characterizing} \end{split}$$

4. $\hat{var}_4(\hat{\beta}_{aug}) = \hat{\Gamma}^{-1}\tilde{\Delta}^*\hat{\Gamma}^{-1}$, where $\tilde{\Delta}^* = m^{-1}\sum_i (\mathbf{H_i}\tilde{\psi}_i)^{\bigotimes 2}$, with $\tilde{\psi}$ and $\mathbf{H_i}$ are as defined above. In 2) and 4), the lower bound q is typically set to 0.75 to prevent gross inflation [1].

Appendix C: Additional Simulations

 $V(Y_{ij}|A_i)$ in the main text.

Table 1. Standard vs. Augmented GEE, Binary Outcome: 250 clusters, low and high association, $\rho = 0.05$. Std: unaugmented. Correlation is exchangeable for all estimators. C,F,O,W: augmentation with 'Correct','Forward' selected, 'One-variable', or 'Wrong' model. ML, OLS: augmentation fit with maximum likelihood or ordinary least squares. SE: average unadjusted sandwich. MC RE: square of the Monte Carlo SE of the Std(Exch) estimator divided by the Monte Carlo SE for the indicated estimator. Coverage: coverage based on unadjusted sandwich SE.

	Estimator	\hat{eta}_1	Bias	SE	MC SE	MC RE	Coverage
m=250, low	Std	-0.3036	0.0077	0.0739	0.0778	1.0000	0.936
	C - ML	-0.3029	0.0069	0.0705	0.0744	1.0951	0.935
	C - OLS	-0.3032	0.0072	0.0710	0.0750	1.0778	0.937
	F - ML	-0.3023	0.0064	0.0701	0.0753	1.0683	0.935
	F - OLS	-0.3026	0.0066	0.0703	0.0757	1.0571	0.937
	O - ML	-0.3033	0.0073	0.0717	0.0752	1.0704	0.937
	O - OLS	-0.3033	0.0073	0.0717	0.0754	1.0658	0.935
	W - ML	-0.3034	0.0075	0.0728	0.0768	1.0271	0.938
	W - OLS	-0.3035	0.0075	0.0728	0.0768	1.0258	0.938
m=250, high	Std	1.1310	0.0052	0.0567	0.0576	1.0000	0.943
	C - ML	1.1314	0.0047	0.0489	0.0497	1.3429	0.940
	C - OLS	1.1313	0.0049	0.0496	0.0505	1.2989	0.943
	F - ML	1.1314	0.0047	0.0485	0.0502	1.3156	0.937
	F - OLS	1.1314	0.0048	0.0491	0.0510	1.2719	0.941
	O - ML	1.1312	0.0050	0.0501	0.0509	1.2799	0.934
	O - OLS	1.1313	0.0048	0.0506	0.0512	1.2651	0.941
	W - ML	1.1310	0.0051	0.0531	0.0542	1.1301	0.938
	W - OLS	1.1310	0.0051	0.0533	0.0542	1.1266	0.937

Table 2. Standard vs. Augmented GEE, Binary Outcome: 250 clusters, low and high association, $\rho=0.05$. Std: unaugmented. Correlation is exchangeable for all estimators. C,F,O,W: augmentation with 'Correct','Forward' selected, 'One-variable', or 'Wrong' model. ML, OLS: augmentation fit with maximum likelihood or ordinary least squares. SE: average unadjusted sandwich. MC RE: square of the Monte Carlo SE of the Std(Exch) estimator divided by the Monte Carlo SE for the indicated estimator. Coverage: coverage based on unadjusted sandwich SE.

	Estimator	$\hat{\beta}_1$	Bias	SE	MC SE	MC RE	Coverage
m=250, low	Std	-0.2299	0.0135	0.1164	0.1190	1.0000	0.938
	C - ML	-0.2290	0.0126	0.1144	0.1173	1.0293	0.936
	C - OLS	-0.2293	0.0129	0.1146	0.1175	1.0256	0.935
	F - ML	-0.2276	0.0112	0.1135	0.1185	1.0077	0.932
	F - OLS	-0.2280	0.0116	0.1135	0.1187	1.0041	0.933
	O - ML	-0.2294	0.0130	0.1150	0.1175	1.0253	0.935
	O - OLS	-0.2295	0.0130	0.1150	0.1176	1.0234	0.935
	W - ML	-0.2296	0.0131	0.1155	0.1188	1.0020	0.931
	W - OLS	-0.2297	0.0132	0.1155	0.1188	1.0021	0.932
m=250, high	Std	1.0429	0.0072	0.0883	0.0887	1.0000	0.944
	C - ML	1.0436	0.0065	0.0835	0.0848	1.0936	0.949
	C - OLS	1.0435	0.0066	0.0839	0.0851	1.0871	0.948
	F - ML	1.0442	0.0059	0.0828	0.0858	1.0694	0.938
	F - OLS	1.0444	0.0058	0.0831	0.0860	1.0643	0.941
	O - ML	1.0433	0.0068	0.0842	0.0851	1.0863	0.951
	O - OLS	1.0435	0.0067	0.0844	0.0851	1.0861	0.949
	W - ML	1.0431	0.0070	0.0859	0.0869	1.0409	0.951
	W - OLS	1.0431	0.0070	0.0860	0.0869	1.0406	0.950

References

^{1.} Fay MP, Graubard BI. Small-sample adjustments for wald-type tests using sandwich estimators. *Biometrics* 2001; **57**:1198–1206. DOI: 10.1111/j.0006-341X.2001.01198.x.