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Abstract

We investigate two theoretical examples on generalized linear models and linear

mixed models to illustrate the calculation of scaled Cook’s distances. We also

include additional results obtained from the Monte Carlo simulation studies and

real data analysis.

1 Theoretical Examples

In the following, we will derive the scaled Cook’s distances for generalized linear models.

Example S1. We consider Cook’s distance in generalized linear models (?) as follows.

Suppose that the components of y = (y1, . . . , yn)T given X = (x1, · · · ,xn)T are mutually

independent, and the conditional density of yi given xi is given by

p(yi|xi,β, τ) = exp
{
a(τ)−1[yiηi − b(ηi)] + c(yi, τ)

}
, (1)

where a(·), b(·) and c(·, ·) are known functions, ηi = η(µi) and µi = µi(β) = g(xTi β),

in which g(·) is a known monotonic function and twice continuously differentiable and

β = (β1, . . . , βp)
T . Throughout this example, the parameter of interest is β and τ is a

nuisance parameter and is fixed at τ̂ . We define

V (β) = diag(b̈(η(µ1(β))), . . . , b̈(η(µn(β)))) and D(β)T = (∂βµ1(β), . . . , ∂βµn(β)),

where ∂β denotes differentiation with respect to β and b̈(η) denotes the second derivative

of b(η) with respect to η.
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We first compute the degree of the perturbation for deleting each (yi,xi) for the case

of fixed covariates. SinceM assumes (??). it follows from the Taylor’s series expansion

that

P({i}|M) = Eθ{g(xTi β)[a(τ)−1ηi(β)− a(τ∗)
−1ηi(β∗)]}+ EθEyi,θ[c(yi, τ)− c(yi, τ∗)]

≈ 1

2
b̈(η(µn(β∗)))∂βη(µi(β∗))

T [
n∑
i=1

b̈(η(µn(β∗)))∂βη(µi(β∗))
⊗2]−1∂βη(µi(β∗))

+
1

2
Ki(θ∗)[

n∑
i=1

Ki(θ∗)]
−1, (2)

where Eθ is taken with respect to p(θ|θ∗, G−1nθ ) and Eyi,θ is taken with respect to

p(yi|xi,β, τ) in (??). Moreover, Ki(θ) is defined as

[2ȧ(τ)a(τ)−1 − ä(τ)ȧ(τ)−1]Eyi,θ[ċ(yi, τ)] + Eyi,θ[c̈(yi, τ)].

If we are only interested in β and treat τ as a nuisance parameter, 0.5Ki(θ∗)[
∑n

i=1Ki(θ∗)]
−1

can be dropped from P({i}|M) in (??).

Following the derivations in (??), we can show that Cook’s distance for deleting

subset I with size(I) = n(I) can be approximated by

C̃D(I) =
1

a(τ̂)
êT V̂ −1/2UI(In(I) − ĤI)

−1ĤI(In(I) − ĤI)
−1UT

I V̂
−1/2ê, (3)

where D̂ = D(β̂), V̂ = V (β̂), ê is an n × 1 vector containing all êi = yi − µi(β̂), and

ĤI = X̃I(X̃
T X̃)−1X̃T

I . In addition, X̃ = V̂ −1/2D̂ and X̃I is an n(I)×p matrix containing

the i−th row of X̃ for all i ∈ I, and UI = (ui1 , . . . ,uin(I)
), in which ik ∈ I and uik is an

n× 1 vector with ik−th element equal to 1 and zero otherwise.

For generalized linear models, we can calculate the scaled Cook’s distance and thus

obtain the following theorem.

Theorem S1. Suppose that Assumptions A2-A5 in the appendix hold for the generalized

linear model (??). We have the following results:
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(a) C̃D(I) = CD∗(I)[1 + op(1)], and CD∗(I) = eT∗W∗e∗/[a(τ∗)], where W∗ = (wij∗)

is an n× n matrix and given by

W∗ = V −1/2∗ (In −H∗)UI(In(I) −H∗,I)−1H∗,I(In(I) −H∗,I)−1UT
I (In −H∗)V −1/2∗ , (4)

in which e∗ = (e1∗, . . . , en∗)
T and ei∗ = yi − µi(β∗), D∗ = D(β∗), V∗ = V (β∗), H∗ =

X∗(X
T
∗X∗)

−1XT
∗ , X∗ = V

−1/2
∗ D∗, H∗,I = UT

I H∗UI and β∗ is the true value of β.

(b) Let λI,1 ≥ . . . λI,n(I) ≥ 0 be the ordered eigenvalues of H∗,I . We have

E[CD∗(I)|M] = E{tr[(In(I) −H∗,I)−1]|M} − n(I) =

n(I)∑
j=1

E[(1− λI,j)−1|M]− n(I),

Var[CD∗(I)|M] = a(τ∗)
n∑
i=1

wii∗b
(4)(ηi∗) + Var{tr[(In(I) −H∗I)−1]|M} (5)

+ 2E{tr[(In(I) −H∗,I)−2]|M} − 4E{tr[(In(I) −H∗,I)−1]|M}+ 2n(I),

where ηi∗ = η(µi(β∗)) and b(4)(ηi∗) denotes the fourth derivative of b(η) with respect to

η. If n(I) ≥ p, then
∑n(I)

j=1 E[(1− λI,j)−1|M]− n(I) =
∑p

j=1E[(1− λI,j)−1|M]− p.

(c) If the xi are independently and identically distributed and

0 < E[||b̈(η(g(xTβ)))−1/2∂βg(xTβ)||1+s2 ] <∞ for an arbitrary s > 0, then λI,j−n(I)/n =

o(1) for j ≤ p as n(I)→∞ and n(I)/n→ γ ∈ [0, 1).

Proof of Theorem S1. (a). Let µ(β) = (µ1(β), . . . , µn(β))T . If the model M is true,

then (β̂−β∗) = (DT
∗ V
−1
∗ D∗)

−1DT
∗ V
−1
∗ e∗+ op(n

−1/2). Thus, under Assumptions A2-A5,

we have

UT
I V

−1/2
∗ ê = UT

I V
−1/2
∗ [y − µ(β∗) + µ(β∗)− µ(β̂)]

= UT
I V

−1/2
∗ [e∗ −D∗(β̂ − β∗)] = UT

I (In −H∗)V −1/2∗ e∗[1 + op(1)],

where e∗ = y − µ(β∗). This yields Theorem S1 (a).

(b). We consider two scenarios including both random and fixed covariates. For

the case of random covariate, the current model M includes the specifications of the

distribution on X and the conditional distribution of y given X, which are, respectively,
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represented as MX and My|X. Since E[e⊗2∗ |M] = a(τ∗)E[V∗|MX], we have

E[CD∗(I)|M] = p−1E{tr[H∗,I(In(I)−H∗,I)−1]|M} = p−1E{tr[(In(I)−H∗,I)−1]|M}−p−1n(I),

where E[·|MX] denotes the expectation taken with respect to the distribution of X.

Recall that E[ei∗|M] = 0, E[e2i∗|M] = a(τ∗)E[b̈(ηi∗)|MX], and

E[e4i∗|M] = 3a(τ∗)
2E[b̈(ηi∗)

2|MX] + a(τ∗)
3E[b(4)(ηi∗)|MX].

With some algebraic calculation, it can be shown that

E[
n∑

i,j=1

wij∗ei∗ej∗|M] = a(τ∗)
n∑
i=1

E[wii∗b̈(ηi∗)|MX],

E{[
n∑

i,j=1

wij∗ei∗ej∗]
2|M} = a(τ∗)

3

n∑
i=1

E[w2
ii∗b

(4)(ηi∗)|MX]

+ a(τ∗)
2E({[

n∑
i=1

wii∗b̈(ηi∗)]
2 + 2

n∑
i,j=1

w2
ij∗b̈(ηi∗)b̈(ηj∗)}|MX),

Var{[
n∑

i,j=1

wij∗ei∗ej∗]
2|M} = a(τ∗)

3

n∑
i=1

E[w2
ii∗b

(4)(ηi∗)|MX] + a(τ∗)
2Var[

n∑
i=1

wii∗b̈(ηi∗)|MX]

+ 2a(τ∗)
2E[

n∑
i,j=1

w2
ij∗b̈(ηi∗)b̈(ηj∗)|MX].

Furthermore, we have can be expressed as

n∑
i,j=1

w2
ij∗b̈(ηi∗)b̈(ηj∗) = tr[W∗V∗W∗V∗] = tr[(In(I) −H∗I)−1H∗I(In(I) −H∗I)−1H∗I ]

= tr[(In(I) −H∗I)−2]− 2tr[(In(I) −H∗I)−1] + n(I),
n∑
i=1

wii∗b̈(ηi∗) = tr[W∗V∗] = tr[(In(I) −H∗I)−1H∗I ] = tr[(In(I) −H∗I)−1]− n(I),

which lead to (??). In addition, since H∗ only has p non-zero eigenvalues and H∗,I is

a submatrix of H∗, it follows from Wielandt’s eigenvalue inequality that λI,1 ≥ . . . ≥

λI,p ≥ 0 = λI,p+1 = . . . = λI,n(I) for n(I) ≥ p. This yields Theorem S1 (b).

(c). Note that the matrices H∗,I and (XT
∗X∗)

−1XT
∗,IX∗,I have the same set of

nonzero eigenvalues. Since n−1XT
∗X∗ and n(I)−1XT

∗,IX∗,I converge to the same matrix
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almost surely, n(I)n−1[(n−1XT
∗X∗)

−1n(I)−1XT
∗,IX∗,I − Ip] converges to 0 almost surely

as n, n(I)→∞. This completes the proof of Theorem S1 (c).

Theorem S1 (a) characterizes the stochastic behavior of C̃D(I), which depends on

both the responses and the covariates in the set I. To ensure that E[CD(I)|M] and

QCD(I)(0.5|M) depend only on the size of the perturbation, not the set I itself, we need

to bootstrap the randomness in both the responses and the covariates. Specifically, we

can generate a new set of responses from the fitted model and draw an Is at random from

the original covariate data without (or with) replacement, where size(Is)=size(I). Then,

we calculate the CD(Is) based on the bootstrapped data for s = 1, . . . , S and use their

sample median to approximate QCD(I)(0.5|M). Theorem S1 (b) gives an approximation

of E[C̃D(I)|M] and Var[C̃D(I)|M]. We can draw a sample of sets {Is : s = 1, . . . , S}

of size(I) at random from the original covariate data without (or with) replacement and

approximate them. Moreover, it should be noted that
∑n(I)

j=1 E[(1− λI,j)−1|M] − n(I)

increases with the size of I even for n(I) ≥ p. Theorem S1 (c) shows the asymptotic

consistency of λI,j for j ≤ p. As n(I)/n → γ ∈ [0, 1),
∑p

j=1E[(1− λI,j)−1|M] − p

converges to pγ/(1− γ).

Example S1 (continued). For generalized linear models, we fix all covariates, that

is Z = X, and then calculate the CSCDs as follows. First, we can show that

E[C̃D(I)|M,Z] ≈ tr[(In(I) −H∗,I)−1]− n(I),

Var[C̃D(I)|M,Z] ≈ a(τ∗)
n∑
i=1

wii∗b
(4)(ηi∗) + tr[(In(I) −H∗I)−1H∗I(In(I) −H∗I)−1H∗I ].

Then, similar to the derivations of Theorem S1 (a) and (b), we can show that the

conditionally scaled Cook’s distance CSCD1(I,X) can be approximated by

êT V̂ −1/2UI(In(I) − ĤI)
−1ĤI(In(I) − ĤI)

−1UT
I V̂

−1/2ê− [
∑n(I)

j=1 (1− λI,j)−1 − n(I)]

{a(τ∗)
∑n

i=1wii∗b
(4)(ηi∗) + tr[(In(I) −H∗I)−1H∗I(In(I) −H∗I)−1H∗I ]}1/2

.

To approximate CSCD2(I,X), we can generate responses from the model fitted to the
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data and then substitute them into Theorem S1 (a) to obtain a sample of simulated

C̃D(I)’s given the covariates. Finally, we can use the empirical median and median

standard deviation of the simulated C̃D(I)’s to approximate CSCD2(I,Z).

We consider the general linear model with correlated errors (LMCE).

Example S2. Consider the LMCE given by

Y = Xβ + ε, ε ∼ N(0, σ2R). (6)

By choosing various R’s, LMCE includes the linear model with independent data, the

multivariate linear model, time series models, geostatistical models, and mixed effects

models as special cases (??). Similar to ?, we fix R at an appropriate estimate R̂

throughout the example. We can calculate the generalized least squares estimator

β̂ = (XTR−1X)−1XTR−1Y = BY and σ̂2 = YTQY/(n− p) = êTR−1ê/(n− p),

where Q = R−1 −H, ê = RQY, and H = R−1X(XTR−1X)−1XTR−1. Moreover, we

have var(β̂) = σ2(XTR−1X)−1. It has been shown in ? that Cook’s distance for deleting

the subset I is given by

CD(I) =
1

σ̂2
εTQUIQ

−1
II (RII −QII)Q

−1
II U

T
I Qε ≈ (7)

C̃D(I) =
1

σ2
εTQUIQ

−1
II (RII −QII)Q

−1
II U

T
I Qε,

where QII is the (I, I) subset of Q and RII is the (I, I) subset of R−1.

Since C̃D(I) is a quadratic form of ε, it follows from the well known results in (?)

that

E[CD(I)|M] ≈ E[tr(Q−1II R
II)|M]− n(I) =

n(I)∑
j=1

E[(1− λI,j)−1|M]− n(I), (8)

Var[CD(I)|M] ≈ 2E(tr{[Q−1II R
II − In(I)]

2}|M) + Var[tr(Q−1II R
II)|MX ],

where MX represents the distribution of X and λI,1 ≥ . . . ≥ λI,n(I) are the ordered

eigenvalues of (RII)−1/2HII(R
II)−1/2, in which HII is the (I, I) subset of H. Therefore,
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the scaled Cook’s distance SCD1(I) can be approximated by

CD(I)− E[tr(Q−1II R
II)|M] + n(I)

{2E(tr{[Q−1II RII − In(I)]2}|M) + Var[tr(Q−1II R
II)|MX ]}1/2

.

Similar to Theorem S1 (b), when n(I) ≥ p, the right-hand side of (??) reduces to∑p
j=1E[(1−λI,j)−1|M]−p. In many scenarios such as the multivariate linear model, we

can follow the strategies in Example S1 to approximate E[CD(I)|M] and Var[CD(I)|M].

However, for time series data, since the elements in X are responses in an autoregres-

sive model, such as the AR(1) model, we can use the parametric bootstrap to gen-

erate random samples from the fitted model and then approximate E[CD(I)|M] and

Var[CD(I)|M].

We calculate the conditionally scaled Cook’s distances as Z = X. Since C̃D(I) is a

quadratic form of ε, it follows from the well known results in (?) that

E[CD(I)|M,Z] ≈ tr(Q−1II R
II)− n(I) =

n(I)∑
j=1

(1− λI,j)−1 − n(I), (9)

Var[CD(I)|M,Z] ≈ 2tr{[Q−1II R
II − In(I)]

2}.

Thus, the conditionally scaled Cook’s distance CSCD1(I,Z) can be approximated by

CD(I)− tr(Q−1II R
II) + n(I)

(2tr{[Q−1II RII − In(I)]2})1/2
.

2 Simulation Studies and A Real Data Example

In this section, we include an additional simulation study and some detailed results

obtained from the simulated studies and the real data analysis in the paper.

2.1 Simulated Study I

The goals of our simulations were to evaluate the accuracy of the first-order approxima-

tions to Cook’s distance and its associated quantities (e.g., mean) and to examine the
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finite sample performance of Cook’s distance and the scaled Cook’s distances for detect-

ing influential clusters in longitudinal data. We generated 100 datasets from a linear

mixed model. Specifically, each dataset contains n clusters. For each cluster, the random

effect bi was first independently generated from a N(0, σ2
b ) distribution and then, given

bi, the observations yij (j = 1, · · · ,mi; i = 1, . . . , n) were independently generated from

a normal random generator such that yij ∼ N(xTijβ + bi, σ
2
y) and the mi were randomly

drawn from {1, . . . , 10}. The covariates xij were set as (1, ui, tij)
T , among which tij

represents time and ui denotes a baseline covariate. Moreover, tij = log(j) and the ui’s

were independently generated from a N(0, 1) distribution. For all 100 datasets, both the

responses and covariates were repeatedly generated, while the true value of (βT , σb, σy)

was fixed at (1, 1, 1, 1, 1). The sample size n was set at 30 to represent a relatively small

sample size. We also explored other sample sizes and different degrees of correlation and

obtained similar findings, and thus we did not report them here for the sake of space.

We carried out three experiments as follows. We treated (σb, σy) as nuisance param-

eters and β as the parameter vector of interest. The first experiment was to evaluate

the accuracy of C̃D(I) to CD(I). We considered two scenarios. In the first scenario,

we directly used the simulated 100 datasets as the above linear mixed model. In the

second scenario, for each simulated dataset, we deleted all the observations in clusters

n − 1 and n and then reset (mn−1, bn−1) = (1, 4) and (mn, bn) = (10, 3) to generate yi,j

for i = n − 1, n and all j according to the above random effects model. Thus, the new

(n − 1)th and nth clusters can be regarded as influential clusters due to the extreme

values of bn−1 and bn. Moreover, the number of observations in these two clusters is

extremely unbalanced.

For each dataset, we deleted each cluster one at a time and then calculated CD(I)

and its first order approximation C̃D(I) for each cluster. Moreover, we computed the
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average CD(I), and the biases and standard errors of the differences CD(I)− C̃D(I) for

each I. Table 1 shows some selected results for each scenario. The average CD(I), is

positively proportional to the cluster size n(I). For the true ‘good’ clusters, the first-

order approximation is very accurate and leads to small average biases and standard

errors. Even for the influential clusters, C̃D(I) is relatively close to CD(I).

In the second experiment, we considered the same two scenarios as the first ex-

periment in order to examine the finite sample performance of E[CD(I)|M,Z] and

Std[CD(I)|M,Z] and their first-order approximations. Specifically, for each dataset, we

set S = 100 and simulated S = 100 random samples from the fitted linear mixed model.

Then, we approximated E[CD(I)|M,Z] and Std[CD(I)|M,Z] by using their empirical

ones, and calculated their first approximations M̂ [C̃D(I)] and Ŝtd[C̃D(I)].

Across all 100 data sets, for each cluster I, we computed the averages ofE[CD(I)|M,Z]

and Std[CD(I)|M,Z], and the biases and standard errors of the differences E[CD(I)|M,Z]−

M̂ [C̃D(I)] and Std[CD(I)|M,Z]− Ŝtd[C̃D(I)]. Table 1 shows some selected results for

each scenario. The averages of E[CD(I)|M,Z] and Std[CD(I)|M,Z] are positively

proportional to the cluster size n(I). For the true ‘good’ clusters, the first-order approx-

imations of E[CD(I)|M,Z] and Std[CD(I)|M,Z] are very accurate and lead to small

average biases and standard errors, while for the influential clusters, their first-order

approximations are relatively accurate.

The third experiment was to examine the finite sample performance of Cook’s dis-

tance and the scaled Cook’s distances for detecting influential cluster in longitudinal

data. We considered two scenarios. In the first scenario, for each of the 100 simulated

datasets, we deleted all the observations in cluster n and then reset mn = 1 and varied

bn from 0.4 to 8.0 to generate yn,1 according to the above random effects model. The

second scenario is almost the same as the first scenario except that we reset mn = 10.
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Table 1: Selected results from simulation studies for n = 30 and the two scenarios: n(I),

M, SD, Mdif (×10−2), and SDif (×10−1) of the three quantities CD(I), E[CD(I)|M,Z],

and Std[CD(I)|M,Z]. n(I) denotes the cluster size of subset I; M denotes the mean;

SD denotes the standard deviation; Mdif and SDdif, respectively, denote the mean and

standard deviation of the differences between each quantity and its first-order approx-

imation. In the first scenario, all observations were generated from the linear mixed

model, while in the second scenario, clusters 29 and 30 were influential clusters. For

each case, 100 simulated datasets were used.

CD(I)
Scenario I Scenario II

I n(I) M SD Mdif SDdif n(I) M SD Mdif SDdif
1 4 0.133 0.237 0.345 0.186 4 0.087 0.142 0.055 0.054
5 9 0.162 0.163 0.001 0.125 9 0.140 0.139 0.019 0.074
10 8 0.159 0.220 0.124 0.107 8 0.138 0.186 -0.0003 0.106
15 1 0.036 0.048 0.022 0.010 1 0.033 0.041 0.018 0.010
20 8 0.156 0.213 0.271 0.019 8 0.120 0.130 0.085 0.069
25 9 0.164 0.166 -0.027 0.102 9 0.143 0.149 -0.111 0.084
29 1 0.041 0.081 0.020 0.010 1 0.343 0.309 0.555 0.181
30 10 0.159 0.203 0.151 0.082 10 0.508 0.505 3.245 0.571

E[CD(I)|M,Z]
Scenario I Scenario II

I n(I) M SD Mdif SDdif n(I) M SD Mdif SDdif
1 4 0.083 0.057 0.016 0.010 4 0.070 0.048 0.030 0.008
5 9 0.165 0.066 0.211 0.031 9 0.159 0.068 0.170 0.022
10 8 0.137 0.056 0.106 0.018 8 0.140 0.078 0.113 0.019
15 1 0.050 0.059 -0.144 0.030 1 0.055 0.051 -0.116 0.026
20 8 0.141 0.056 0.118 0.022 8 0.130 0.062 0.089 0.015
25 9 0.174 0.086 0.194 0.027 9 0.177 0.081 0.170 0.025
29 3 0.067 0.055 0.003 0.010 1 0.056 0.045 -0.129 0.048
30 7 0.119 0.055 0.117 0.016 10 0.197 0.065 0.192 0.028

Std[CD(I)|M,Z]
Scenario I Scenario II

I n(I) M SD Mdif SDdif n(I) M SD Mdif SDdif
1 4 0.107 0.084 0.114 0.036 4 0.088 0.063 0.096 0.034
5 9 0.174 0.076 0.218 0.068 9 0.163 0.072 0.017 0.063
10 8 0.142 0.066 0.036 0.052 8 0.149 0.099 0.114 0.059
15 1 0.075 0.103 0.147 0.063 1 0.080 0.075 0.211 0.061
20 8 0.145 0.069 0.076 0.073 8 0.135 0.081 0.010 0.047
25 9 0.177 0.099 0.046 0.069 9 0.185 0.097 0.039 0.060
29 3 0.090 0.085 0.174 0.077 1 0.082 0.065 0.251 0.089
30 7 0.128 0.070 0.132 0.062 10 0.205 0.068 0.077 0.063
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For each dataset, we deleted each cluster one at a time and calculated CD(I). Then,

we computed PC(I,Z) =
∑

I 6={n} 1(CD(I) ≤ CD({n}))/(n− 1), which characterizes the

probability that CD({n}) is greater than all the other CD(I). We set S = 100 and then

we approximated CSCD1(I,Z), CSCD2(I,Z), ˜CSCD1(I,Z), and ˜CSCD2(I,Z). Subse-

quently, we calculated PA(I,Z) and PB(I,Z) based on ˜CSCD1(I,Z) and ˜CSCD2(I,Z).

Finally, across all 100 datasets, we calculated the averages and standard errors of

all diagnostic measures for the nth cluster for each scenario. Figures S1 and S2 present

some selected results. Comparing the two scenarios, we observed that deleting the n-

th cluster with 10 observations causes larger effect than that with 1 observation (Fig

S1 (a) and Fig S2 (a)). For the first scenario, CD({n}) is relatively smaller than the

other CD(I) (Fig. S1 (d)), whereas for the second scenario, CD({n}) is relatively larger

than other CD(I) (Fig. S2 (d)). Furthermore, in the two scenarios, PA({n},Z) and

PB({n},Z) for the scaled Cook’s distances increase with bn as expected, while they are

quite close to each other across all values of bn (Fig. S1 (d) and Fig. S2 (d)). It may

indicate that all scaled Cook’s distances are consistent with each other.

2.2 Simulation Study II

We included some detailed results for the first two experiments of the simulation studies

in the paper. The first experiment was to evaluate the accuracy of C̃D(I) to CD(I).

The explicit expression of C̃D(I) is given in Example S2 of the supplementary document.

We considered two scenarios. In the first scenario, we directly simulated 100 datasets

from the above linear mixed model. In the second scenario, for each simulated dataset,

we deleted all the observations in clusters 1 and n and then reset (m1, b1) = (1, 4) and

(mn, bn) = (5, 3) to generate yi,j for i = 1, n and all j according to the above linear mixed

model. Thus, the new first and nth clusters can be regarded as influential clusters due
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to the extreme values of b1 and bn. Moreover, the number of observations in these two

clusters is unbalanced.

For each dataset, we deleted each cluster one at a time and then calculated CD(I) and

its first-order approximation C̃D(I) for each cluster. Moreover, we computed the average

CD(I), and the biases and standard errors of the differences CD(I) − C̃D(I) for each

cluster. When no influential cluster is present in the first scenario, the distribution of

CD(I) shifts up as P(I|M) increases (Fig. 3(a)). This result indicates that Assumption

A1 may be reasonable. In the second scenario, the distribution of CD(I) for the true

’good’ clusters shifts up as P(I|M) increases, while that for the two influential clusters

are associated with both P(I|M) and the amount of influence that we introduced (Fig.

4 (a)).

For the true ‘good’ clusters, the first-order approximation is very accurate and leads

to relatively small average biases and standard errors (Figs. 3 (d) and 4 (d)). Moreover,

the degree of accuracy decreases as P(I|M) increases (Figs. 3 (d) and 4 (d)). Even

for the influential clusters, C̃D(I) is relatively close to CD(I) (Fig. 4 (d)). Specifically,

the bias of C̃D(I) relative to CD(I) equals 0.01 for cluster {1} and 0.19 for cluster {n}.

Even for cluster {n}, the bias of 0.19 is relatively small compared with 0.78, the mean

of CD({n}). Moreover, such bias may be negligible for diagnostic purposes.

In the second experiment, we considered the same two scenarios as the first ex-

periment in order to examine the finite sample performance of E[CD(I)|M,Z] and

Std[CD(I)|M,Z] and their first-order approximations. Specifically, for each dataset, we

set S = 200 and simulated S = 200 random samples from the fitted linear mixed model.

Then, we approximated E[CD(I)|M,Z] and Std[CD(I)|M,Z] by using their empirical

ones, and calculated their first approximations M̂ [C̃D(I)] and Ŝtd[C̃D(I)].

In both scenarios, the distribution of E[CD(I)|M,Z] shifts up as P(I|M) increases

12



(Fig. 3 (b) and Fig. 4(b)). This is in agreement with the results of Proposition 1. For

all clusters, the first-order approximations of E[CD(I)|M,Z] and Std[CD(I)|M,Z] are

very accurate and lead to small average biases and standard errors (Fig. 3 (e) and (f),

Fig. 4 (e) and (f)). Moreover, the degree of accuracy decreases as P(I|M) increases

(Figs. 3 (d) and 4 (d)).

Table 2 presents the degrees of perturbation and the means and standard deviations

of four conditionally scaled Cook’s distances including CSCD1(I,Z) and CSCD2(I,Z)

and their first-order approximations for all 12 clusters. In both scenarios, the four

CSCDs are weakly associated with P(I|M). Figure 5 presents the box plots of the

four CSCDs under the two scenarios. Inspecting Figure 5 (a)-(d) does not reveal any

obvious relationship between the distributions of the four CSCDs and the degree of

perturbation in the first scenario. Moreover, in the second scenario, we did not observe

obvious relationship between the distributions of the four CSCDs and the degree of

perturbation for these ’good’ clusters. We also observed from Figure 5 (e)-(h) that for

the two influential clusters, the distributions of the four CSCDs are associated with the

influence level that we introduced.

2.3 Yale Infant Growth Data

Under each model, we calculated CD(I) for each child, which relates more to the detec-

tion of influential clusters (?). We treated β as parameters of interest and all elements

of α as nuisance parameters. For models M1 and M2, inspecting Figures 6 (a) and 7 (a)

reveals that P(I|M) is positively associated with mi. This indicates that the bigger the

cluster size, the larger the degree of perturbation.

Under modelM1, we used CD(I) to select the top five influential subjects 269, 217, 294, 289,

and 274 (Fig. 6 (b)), while we used CSCD1(I) to select the top eight influential subjects

13



Table 2: The two conditionally scaled Cook’s distances of CSCD1(I) and CSCD2(I)

and their first-order approximations ˜CSCD1(I) and ˜CSCD2(I) from simulation studies

for n = 12 and the two scenarios: M denotes the mean; and SD denotes the standard

deviation. In the first scenario, all observations were generated from the linear mixed

model, while in the second scenario, two influential clusters were highlighted in bold.

For each case, 100 simulated datasets were used. Results were sorted according to the

degree of perturbation.

Scenario I

CSCD1(I) CSCD2(I) ˜CSCD1(I) ˜CSCD2(I)
P(I|M) M SD M SD M SD M SD

0.102 -0.016 0.739 1.457 2.854 -0.008 0.789 1.366 2.746
0.108 0.039 0.862 0.976 2.160 0.032 0.844 0.838 1.977
0.110 0.178 1.078 1.599 3.058 0.151 1.010 1.305 2.429
0.128 0.123 1.098 1.436 3.356 0.102 1.120 1.237 2.990
0.147 0.351 1.264 2.210 3.946 0.364 1.315 2.076 3.806
0.159 0.019 0.928 0.854 2.384 -0.001 0.921 0.732 2.088
0.188 0.237 1.037 1.956 3.532 0.240 1.119 1.798 3.478
0.224 0.109 0.832 1.227 2.376 0.118 0.875 1.084 2.215
0.264 0.128 0.974 1.138 2.580 0.114 0.922 1.077 2.272
0.403 0.301 1.390 1.407 3.153 0.297 1.339 1.408 3.008
0.569 0.151 1.023 1.568 3.308 0.131 0.971 1.566 3.244
0.599 0.346 1.583 1.808 3.862 0.312 1.380 1.920 3.825

Scenario II
P(I|M) M SD M SD M SD M SD
0.079 2.486 1.477 9.654 5.280 2.583 1.489 9.721 5.215
0.109 -0.186 0.724 0.455 2.015 -0.175 0.783 0.412 1.969
0.114 -0.116 0.674 0.992 2.345 -0.116 0.705 0.934 2.305
0.131 -0.294 0.544 0.166 1.541 -0.293 0.583 0.157 1.577
0.155 -0.273 0.553 0.304 1.689 -0.285 0.571 0.234 1.653
0.199 -0.284 0.540 0.190 1.522 -0.288 0.565 0.142 1.514
0.226 -0.222 0.619 0.278 1.497 -0.243 0.630 0.224 1.465
0.245 -0.134 0.824 0.328 1.741 -0.106 0.883 0.380 1.764
0.279 1.061 1.695 3.516 4.620 0.644 0.962 2.234 2.189
0.368 -0.096 0.773 0.475 1.738 -0.072 0.841 0.520 1.817
0.534 -0.176 0.862 0.408 2.098 -0.148 0.847 0.505 2.186
0.555 -0.275 0.608 0.309 2.018 -0.261 0.619 0.353 2.064
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274, 90, 217, 109, 294, 289, 246, and 149 (Fig. 6 (c)). Although we observed some differ-

ence between CD(I) and CSCD1(I) in detecting highly influential subjects, the value of

CD(I) and that of CSCD1(I) are positively correlated with each other across all subjects

(Figure 6 (d)). Moreover, Table 3 presents the top twelve influential subjects detected by

CD(I), CSCD1(I|M,Z), and CSCD2(I|M,Z). We used PB(I,Z) to quantify whether a

specific subject is influential relative to the fitted model for all subjects (Figure 6 (e)).

Inspecting Figure 6 (f) reveals that there are large number of influential subjects, and

thus it may indicate the potential model misspecification in model M1.

Under modelM2, we used CD(I) to select the top five influential subjects 269, 285, 280, 246,

and 58 (Fig. 7 (b)), while we used CSCD1(I) to select the top eight influential subjects

246, 141, 109, 31, and 193 (Fig. 7 (c)). Although we observed some difference between

CD(I) and CSCD1(I) in detecting highly influential subjects, the value of CD(I) and

that of CSCD1(I) are positively correlated with each other across all subjects (Figure 7

(d)). We used PB(I,Z) to quantify whether a specific subject is influential relative to

the fitted model for all subjects (Figure 7 (e)). Inspecting Figure 7 (f) reveals that the

number of influential subjects has dramatically reduced, and thus it may indicate that

model M2 outperforms model M1 in fitting the Yale infant growth data.
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Table 3: Yale infant growth data. Top 12 influential subjects for single case deletion

with the compound symmetry model.

ID mi CD ID mi CSCD1 PB(I,Z) ID mi CSCD2 PB(I,Z)

269 12 2.416 274 22 43.593 1.000 217 19 62.639 1.000

217 19 1.465 217 19 27.359 1.000 274 22 60.809 1.000

294 13 1.252 90 17 27.273 1.000 90 17 51.969 1.000

289 18 1.188 109 12 25.520 1.000 109 12 48.173 1.000

274 22 1.163 289 18 24.610 1.000 294 13 45.117 1.000

90 17 0.858 294 13 23.950 1.000 149 17 43.843 1.000

38 24 0.823 149 17 22.217 1.000 38 24 40.753 1.000

285 8 0.738 246 5 21.443 1.000 289 18 36.529 1.000

280 9 0.695 38 24 16.508 1.000 246 5 35.626 1.000

149 17 0.668 62 13 16.455 1.000 269 12 33.447 1.000

109 12 0.625 269 12 16.172 1.000 280 9 25.034 1.000

224 22 0.591 280 9 15.098 1.000 62 13 24.483 1.000

Note that mi represents cluster size and PB(I,Z) is computed by equation (??) .
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Figure 1: Results from 100 datasets simulated from a linear mixed model, in which

m30 = 1 and b30 varies from 0.4 to 8.0. Panel (a) shows the box plots of Cook’s distances

as a function of b30; panel (b) shows the box plots of CSCD1(I,Z) as a function of b30;

panel (c) shows the box plots of PA(I,Z) as a function of b30; panel (d) shows the mean

curves of PA(I,Z) based on the four scaled Cook’s distances, in which the green line is

for CSCD1(I,Z), the dark green line is for CSCD2(I,Z), the blue line is for ˜CSCD1(I,Z),

and the dark line is for ˜CSCD1(I,Z), and the mean curve of PC(I,Z) based on CD(I)

(red line) as functions of b30.
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Figure 2: Results from 100 datasets simulated from a linear mixed model, in which

m30 = 1 and b30 varies from 0.4 to 8.0. Panel (a) shows the box plots of Cook’s distances

as a function of b30; panel (b) shows the box plots of CSCD1(I,Z) as a function of b30;

panel (c) shows the box plots of PB(I,Z) as a function of b30; panel (d) shows the mean

curves of PB(I,Z) based on the four scaled Cook’s distances, in which the green line is

for CSCD1(I,Z), the dark green line is for CSCD2(I,Z), the blue line is for ˜CSCD1(I,Z),

and the dark line is for ˜CSCD1(I,Z), and the mean curve of PC(I,Z) based on CD(I)

(red line) as functions of b30.
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(a)	   (b)	   (c)	  

(d)	   (e)	   (f)	  

Figure 3: Simulation results from 100 datasets without influential clusters directly sim-

ulated from a linear mixed model. The x−axis corresponds to the order of the sorted

degree of perturbation for all clusters. Panels (a), (b), and (c) show the box plots

of CD(I), E[CD(I)|M,Z], and Std[CD(I)|M,Z] as a function of P(I|M); panels (d),

(e), and (f) show the box plots of CD(I) − C̃D(I), E[CD(I)|M,Z] − M̂ [C̃D(I)], and

Std[CD(I)|M,Z]− Ŝtd[C̃D(I)] as a function of P(I|M).
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(a)	   (b)	   (c)	  

(d)	   (e)	   (f)	  

Figure 4: Simulation results from 100 datasets with two influential clusters simulated

from a linear mixed model, in which we reset (m1, b1) = (1, 4) and (mn, bn) = (5, 3) to

generate yi,j for i = 1, n and all j according to the same linear mixed model.. The x−axis

corresponds to the order of the sorted degree of perturbation for all clusters. Panels (a),

(b), and (c) show the box plots of CD(I), E[CD(I)|M,Z], and Std[CD(I)|M,Z] as

a function of P(I|M); panels (d), (e), and (f) show the box plots of CD(I) − C̃D(I),

E[CD(I)|M,Z]−M̂ [C̃D(I)], and Std[CD(I)|M,Z]−Ŝtd[C̃D(I)] as a function of P(I|M).
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(a)	   (b)	   (c)	   (d)	  

(e)	   (f)	   (g)	   (h)	  

Figure 5: Simulation results from 100 datasets simulated from a linear mixed model in

the two scenarios. The first row corresponds to the first scenario with no influential

subjects. The second row corresponds to the second scenario, in which we set (m1, b1) =

(1, 4) and (m12, b12) = (5, 3). The x−axis corresponds to the order of the sorted degrees

of perturbation. For the second scenario, the 1st and 9th cases are, respectively, the

two influential subjects with (m1, b1) = (1, 4) and (m12, b12) = (5, 3). Panels (a) and (e)

show the box plots of CSCD1(I,Z) as a function of P(I|M); panels (b) and (f) show

the box plots of CSCD2(I,Z) as a function of P(I|M); panels (c) and (g) show the box

plots of ˜CSCD1(I,Z) as a function of P(I|M); panels (d) and (h) show the box plots of˜CSCD2(I,Z) as a function of P(I|M).
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Figure 6: Yale infant growth data analysis based on modelM1. Panel (a) shows P(I|M)

versus mi; panels (b), (c), (d), and (e), respectively, present CD(I) versus P(I|M),

CSCD(I|Z) versus P(I|M), CSCD(I|Z) versus CD(I), and PB(I|Z) versus CD(I); panel

(f) presents the histogram of PB(I|Z).
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Figure 7: Yale infant growth data analysis based on modelM2. Panel (a) shows P(I|M)

versus mi; panels (b), (c), (d), and (e), respectively, present CD(I) versus P(I|M),

CSCD(I|Z) versus P(I|M), CSCD(I|Z) versus CD(I), and PB(I|Z) versus CD(I); panel

(f) presents the histogram of PB(I|Z).
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