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ABSTRACT A model for sequential clinical trials is dis-
cussed. Three proposed stopping rules are studied by the Monte
Carlo method for small patient horizons and mathematically
for large patient horizons. They are shown to be about equally
effective and asymptotically optimal from both Bayesian and
frequentist points of view and are markedly superior to any
fixed sample size procedure.

Consider the design of a clinical trial to select the better of two
treatments, A or B, for treating a specified number N of pa-
tients. The trial phase involves pairwise allocation of treatments
to n pairs of patients, after which the apparently superior
treatment is given to the remaining N - 2n patients. We shall
assume that the difference in effect of the two treatments is
measured by a random variable z which is normally distributed
with mean 6 and variance A2. If 6> 0, treatment A is preferred
to treatment B; if 6 < 0, the preference is reversed; and if 6 =
0, neither is preferred. The problem is to decide on the number
of pairs to be used for the trial phase.

Let zi denote the difference in response between the patient
receiving treatment A and the patient receiving treatment B
in the ith pair on trial, and letsn = z1 + . . . + z,. If n pairs are
put on trial and the remaining N - 2n patients are given
treatment A or B according to if Sn > 0 or s, < 0, then the total
number of inferior treatments is n + (N - 2n)I(sn <0) if 6>
0 and n + (N - 2n)I(sn > 0) if 6 < 0, where I(-) denotes the
indicator function of the event in question. Given a stopping
rule T for determining the number of pairs of patients to be put
on trial, the regret R(6,T) is defined to be the expected total
difference in response between the ideal procedure, which
would assign all N patients to the superior treatment, and the
procedure determined by the stopping rule T; hence, R(6,T)
equals 161 times the expected number of inferior treatments,
or

R(6,T) = bE6{T + (N - 2T)I(ST < 0)j if 6 > 0
= 161 EbIT + (N - 2T)I(ST>0O if 6<0. [1]

Our primary purpose is to compare three stopping rules for
minimizing Eq. 1 in the case of known U: (i) the Bayes rule TB
for a flat prior on 6; (11) an ad hoc rule TA suggested by Ans-
combe (ref. 1); and (Mi) another ad hoc rule T* considered here
for the first time. These rules are studied by the Monte Carlo
method, and analytic approximations are obtained as N - c.
A general conclusion is that all three rules are about equally
good from both a frequentist and a Bayesian point of view. We
also discuss briefly the case of unknown a.

Suppose first that a is known and hence without loss of gen-
erality that a = 1. Let 4P denote the distribution function and
X the density function of the standard normal distribution. To
provide a standard of comparison for the stopping rules to be
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discussed below, suppose for the moment that I 6 I is known and
that we need only discover whether sgn 6 is +1 or -1. Then a
fixed sample size n minimizing R(I 6 ,n) would be obtained by
solving the equation

an R(|6, n) = 161 a In + (N - 2n)4!(-16InI/2)iJ = 0,

which defines n implicitly by

g(I6In1/2) = N/(2n), [2]
where

g(x) = [2¢P(x) - l]/[xk(x)] + 1 if x > 0,
=3 if x=0. [3]

It can be shown that g(x) is increasing in x > 0. For this mini-
mizing value of n, say n = n*(I 6 1), one can show that for any
6#0

R(6,n*)-(2logN)/|6l as N- 'oo. [4]
In practice 161 will be unknown, but we can try to estimate

it sequentially. Thus, Eq. 2 suggests the following procedure.
Stop the trial at stage

T* = inflk:g(jsk I/k'!2) 2 N/(2k)j. [5]
Since g(x) > 3 for all x > 0, T* < N/6. Among other properties
of T*, we shall show that for every fixed 6 $ 0, R(6,T*) -

R(6,n*) as N -- Ao. Hence, T* is asymptotically as efficient as
the optimal fixed sample size n*, which requires knowledge
of 161.
An alternative approach in ignorance of 161 is to assume a

prior distribution G on 6 and to choose a stopping rule T to
minimize the integrated regret f -, R(6,T)dG(6). Anscombe
(ref. 1) first considered this problem with the flat prior dG(6)
= d6. Although the integrated regret with respect to the flat
prior is infinite for every stopping rule T(2 1), the posterior
regret r(k,s) given that Sk = s and that stopping occurs at stage
k is well defined and can be shown to be
r(k,s) = Isl + k-'/2NIk(s/k'/2)

- k""21s1 4(-IsI/k"2)i. [6]
For fixed k, r(k,s) attains its minimal value at two symmetric
points, s and -s, defined by the equation

1 - 4t(Is I/k"l2) = k/N. [7]
Anscombe suggested using Eq. 7 to define a stopping rule

TA = inffk:l- 4(Isk I/k'2) S kINI, [8]
which, like T*, will be shown to be asymptotically optimal from
both the Bayesian and the frequentist points of view.
The exact solution TB to the Bayes problem considered by

Anscombe can be computed by the backward induction algo-
rithm (e.g., ref. 2, p. 50). Fig. 1 plots the stopping boundaries
of T*, TA, and TB for N = 100.



Proc. Natl. Acad. Sci. USA 77 (1980)

with the rules T* and TA in Eqs. 5-8: as t 0,

f*(t) = t2t [log 1 + I log log I -- log 47r + o(i) /2 [16]
t 2 t 2

[11 1112
fA(t) = j2t [log -2 log log --- log 4r + o(l) [17]

t 2 t 2

Hence, for small t the three boundaries f*(t), fA(t), and fB(t)
are close to each other; and f*(t) > fA(t) > fB(t), as is illustrated
in Fig. 1.

Let O denote the set of all continuous functions f: (0,'/2]
[O,.o) satisfying the following two conditions: (i) as t 0,

f(t) {2t log
1 /2;

t = k/N
FIG. 1. The boundary T* (0), Anscombe boundary TA (X), and

Bayes boundary TB (0) for N = 100.

An asymptotically optimal class of stopping rules
Given any continuous function f:(O, 1/2] °[,o), define the
stopping rule

T(J,N) = inffk < N/2:IskI > N/2f(k/N)I(inf = N/2). [9]

The stopping rule T* in Eq. 5 is of this form with f(t) equal
to

f*(t) = tl/2g-1(1/2t), [10]
where g is defined in Eq. 3. Likewise Anscombe's rule TA in
Eq. 8 is also of this form with f(t) equal to

NO~t = t1/2(k-1( - t). [II]
Let 0 = WN'/2. Let w(t), t 2 0, denote the Wiener process

with drift coefficient 0 under the probability measure Pa. Let
IN = {k/N:1 < k < N/23. Under Pa, the sequences {SkS and
N1"2W(k/N)1 have the same distribution, and therefore the
stopping rule T(fN) has the same distribution as NTf.N, where
Tf,N is the stopping rule defined on the Wiener process w(t)
by

Tf N = inf{t e IN: Iw(t)I > f(t)(inf4 = 1/2). [12]
As N co, fN converges with probability 1 to

r(f) = inf ft & (, I) Iw(t)I > f(t)}. [13]

The regret R(3; T(fN)) can be expressed in terms of the process
w(t) as

R(3; T(fN)) = N'/2p(0; TfN), [14]

where we define for any stopping rule r(< 1/2) on w(t)
p(0; T) = 0E6sjr + (1 - 2-r)I(w(T) < 0)) if 0 > 0,

= 101 E1Tr+ (1-2T)I(w(r) 2 0)j if 0 < 0.

In connection with the Bayes rule TB with respect to the flat
prior on 6, Chernoff and Petkau (3) recently studied the cor-
responding continuous time problem of minimizing the inte-
grated risk f:a p(0; T)d0 among all stopping rules T S 1/2 on
the process w(t). The minimizing r is of the form T(fB) in Eq.
13, and they obtained the following asymptotic expansion of
the Bayes optimal boundary fg(t) as t -k 0:

fB(t) = 2t log t -log lo4 t 2log 167r + o(l)J} [151

It is interesting to compare Eq. 15 with the following as-
ymptotic expansions of the boundariesf*(t) and fA(t) associated

[18]

and (ii) there exist 1 < 3/2 and to > 0 such that for all 0< t <
to,

f(t) 2t (log! - tn log log / [19]

In view of Eqs. 15-17, the boundaries f*, fA, andfB all belong
to @. The following theorem shows that for every given 6,
stopping rules of the form T(fN) in Eq. 9 with f e @ are
asymptotically (as N o) as efficient as the optimal fixed
sample size n * which assumes 161 known.
THEOREM 1. Let f e @. Then for every fixed 6 ui 0,

[20]R(3; T(f,N)) (2 log N)/ I 6 I as N - C.

Hence, in view of Eq. 4, for every fixed 6 $ 0,

R(b; TWf,))- R(b; n*).
Moreover, as N - o and 6 - 0 such that I t = N"/211

R(A; T(f,N)) 2(log 02)/161 - R(3; n*). [21]
The order of magnitude of the regret R(3; T(fN)) given by

[20] is asymptotically minimal in the sense of the following
theorem.
THEOREM 2. Let a > 1 and let bN be a sequence of positive

constants such that 3N - 0 and log 3j6 = o(log N) as N -o.
For every N > 2, let TN denote the class ofstopping rules T
< N/2 such that R(bN; T) < (log N)a/bN. Let f e @. Then
T(f,N) e TNfor all large N in view of [21], andfor everyfixed
3s 0,

inf R(3; T) (2 log N)/I3I R(3; T(f,N)) as N .

Te TN

Stopping rules of the form T(fN) with f e @ are also
asymptotically optimal from a Bayesian point of view. The
following theorem shows that these rules are asymptotically
Bayes with respect to any prior distribution on 3 that has a
positive continuous density in some neighborhood of the origin.
Moreover, their integrated regret is of the order of (log N)2 and
is therefore much smaller for large N than f2NG'(0) X
SJIbldG(3)j1/2, which can be shown to be asymptotically
equivalent to the integrated regret of the Bayes rule using the
optimal fixed n for a given prior G on 3.
THEOREM 3. Let G be a distribution function on (-o,oo)

such that G' is positive and continuous in some neighborhood
of the origin and fSc*/I3IdG(b) < oo. Let f e @. Then as N-
co

f@ R(6: T(f,N))dG(3) G'(0)(log N)2

inf fS R(3; T)dG(3).
T

The proofs of Theorems 1-3 will be given elsewhere.
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Table 1. Risk of Anscombe's rule for various Na
0 = N = 400 N = 2500 N = 10,000
6N'1/2R P E R P E R P E

0 0 0.5 0.15 0 0.5 0.14 0 0.5 0.13
1 0.36 0.31 0.14 0.37 0.33 0.13 0.37 0.33 0.12
2 0.52 0.18 0.13 0.53 0.20 0.11 0.54 0.20 0.11
3 0.56 0.09 0.11 0.56 0.11 0.10 0.57 0.12 0.09
5 0.47 0.03 0.07 0.51 0.04 0.07 0.51 0.04 0.07

10 0.36 0.002 0.03 0.36 0.005 0.03 0.38 0.01 0.03
16 0.31 0.0003 0.02 0.27 0.001 0.02 0.29 0.003 0.02
24 0.28 0.4-10-4 0.01 0.24 0.0002 0.01 0.23 0.0007 0.01

a 6 > 0, a = 1, R = N-112 R(T,6), P = PSIST < 01, E = N-1 E6(T).
The case of unknown variance
In the case of known a, writing Anscombe's stopping rule as

TA = inf {k:4) (k' )I 'IJ-k [22]
we can regard TA as the stopping rule of a symmetric repeated
significance test of Ho:6 < 0 versus H1:6 > 0 with nominal
significance level at stage k equal to k/N. When a is unknown,
we can estimate it from the data observed so far, and it is natural
to replace a in Eq. 22 by ak, where

k
= E (z, - zk)2/(k - 1), Zk = 5k/k.

i=1
For 6 = 0, while 4' is the distribution function of sk/(k'/2a) in
Eq. 22, Sk/(k1/2(Yk) has the t distribution with k - 1 degrees of
freedom. This suggests the following analogue of TA for the case
of unknown a:

T= inf k >22:Fkj (kI) 2 I ) [23]
where F, denotes the distribution function of the t distribution
with v degrees of freedom. Letting F,(t) = 4'(x,(t)) and

U(t;,v) = v log (1 + -)1/, [24]

it is convenient to use in Eq. 23 the following two simple ap-
proximations to x,(t) due to Wallace (4):

u1(t;v) = u(t;v) -1- 1 ) [25]

U2(t;V) = u(t;v) jI - 2(1 -8e+)1/2' [26]

with
= (0. 184)(8 + 3)
Yv/2u(t;v)

As shown by Wallace, u(t;v) 2 x,(t) 2 u1(ty), and u2(t;v)
provides an excellent approximation to x,(t) over a wide range
of values of v and t. Thus instead of T. it is more convenient to
use the stopping rule

= inffk 2 2:4[u(IskI/(akk/2); k - 1)]-> 1 - k/NJ [27]
for i = 1 or 2. It may be shown analogously to Theorems 2 and
3 that the stopping rules T, T1, and T2 are asymptotically op-
timal asN -' in the case of unknown a, from both the Bay-
esian and frequentist points of view.
Error probability and expected sample size
approximations
Suppose again that a = 1. Two of the three terms in the regret
defined by Eq. 1 are E6(T), the expected number of pairs in the
trial phase, and P6tST < 0j (6> 0), the probability of making
an incorrect decision for the post-trial phase. In sequential
hypothesis testing, in the absence of a specific loss function, it
is customary to examine these two quantities separately in
evaluating a test. Hence, it is of interest to give approximations
to E6(T) and P6(ST < 0) for 6 > 0.

Suppose that as t - 0, for some < 3/2 and c > 0 (see Eqs.
15-17)
f(t) = 12t (log(l/t) - n log log(l/t) - log c + o(l))11/2. [28]
By theorem 3of ref. 5, for each 6 .0 as N oX
E6IT(J,N)j = 6-212 log(N62) - 2(1 + X) log log(Nb2)

-log 4C2-1 + Ka + o(1)j, [29]
where Ka can be computed numerically and equals 1.166 ...
6+ 62/4 + o(62) as 6 - 0. However, this result does not yield
good numerical approximations, because for 6 near 0, the factor
6-2 magnifies the effect of the asymptotically negligible o(1)
in Eq. 29. Although difficult to justify rigorously, the ideas in
ref. 5 suggest that E6fT(fN)j should approximately equal the
root x of the equation
x = 6-212 log(N/x) - 2n log log(N/x)

- log c2 - 1 + 2/log(Nb2)j + 1.166/6. [30]
We hope that solving Eq. 30 will provide useful approximations
to E6(T) when it is not too small and when P61ST < 0 is near 0.
Comparisons with the Monte Carlo results in Table 1 indicate
that this is the case.

It seems a fairly delicate problem to approximate P64ST < 0J
for 6 > 0. However, for Brownian motion and boundaries f
satisfying Eq. 28, a modification of the argument given in ref.
6 shows that as 0 co

Pbtw(r)) <01 C(log 0)n1/2 [31]

Table 2. Regret, error probability, and expected sample size for n *, T*, TA, TB, A., and T2a
0= n* T* TA TB Pi T2

6N'1' ~R P E R P E R P E R P E R P E R P E
0.5 0.22 0.43
1 0.39 0.34
2 0.61 0.22
3 0.70 0.14
4 0.73 0.10
5 0.72 0.07
6 0.71 0.05
7 0.68 0.04
8 0.66 0.03
9 0.63 0.02

10 0.60 0.02
20 0.43 0.005

0.17 0.21 0.39
0.16 0.38 0.39
0.15 0.53 0.20
0.13 0.60 0.11
0.11 0.58 0.06
0.09 0.57 0.03
0.08 0.50 0.01
0.07 0.50 0.003
0.06 0.51 0.001
0.05 0.50 0.000
0.04 0.50 0.000
0.02 0.48 0.000

0.13 0.22
0.13 0.37
0.12 0.53
0.12 0.55
0.10 0.54
0.09 0.51
0.08 0.47
0.07 0.47
0.06 0.44
0.06 0.45
0.05 0.41
0.02 0.38

0.42
0.32
0.17
0.08
0.03
0.02
0.01
0.004
0.002
0.001
0.001
0.000

0.18 0.22 0.42
0.16 0.37 0.33
0.15 0.56 0.23
0.13 0.61 0.14
0.11 0.61 0.09
0.09 0.56 0.06
0.07 0.50 0.04
0.06 0.46 0.03
0.05 0.43 0.02
0.05 0.40 0.01
0.04 0.37 0.008
0.02 0.29 0.000

0.10 0.22 0.41
0.09 0.37 0.33
0.09 0.56 0.21
0.08 0.65 0.13
0.07 0.61 0.08
0.05 0.63 0.05
0.05 0.61 0.04
0.04 0.58 0.03
0.04 0.51 0.01
0.03 0.52 0.01
0.03 0.52 0.01
0.01 0.52 0.000

0.14 0.22 0.42
0.13 0.39 0.35
0.12 0.57 0.21
0.11 0.65 0.13
0.08 0.65 0.09
0.08 0.64 0.05
0.06 0.62 0.04
0.05 0.58 0.03
0.05 0.56 0.02
0.04 0.52 0.01
0.04 0.52 0.01
0.03 0.52 0.000

aN = 100,6 >0, o = 1, R = R(6,T)/N1/2,P =P61ST <01, E = EA(T)/N.

0.13
0.12
0.12
0.10
0.08
0.08
0.06
0.05
0.05
0.04
0.04
0.03

Statistics: Lai et al.
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This suggests that for N large and 0 = 6NI/2 moderately large,
and for, say, f = fA,

P61ST < 0j _ 0-2.
Comparison with the Monte Carlo results in Table 1 indicate
that this is a good approximation for N = 10,000 and 2 < 0 <
10. For smaller 0, [31] is not applicable. For larger 0, neglecting
the excess over the boundary in using Brownian motion is too
crude.

Tables 1 and 2 report the results of two Monte Carlo exper-
iments. Table 2 gives the risk, error probability, and expected
sample size of the stopping rules T*, TA, TB, T1, and T2 for a
= 1 and N = 100 and compares these quantities with those of
the optimal fixed sample size n*, which assumes 161 and a
known. Table 1 gives similar results for Anscombe's rule and
N = 400,2500, and 10,000.
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