## Supplemental Material to:

### Pauline C. Conroy, Chiara Saladino, Tiago J. Dantas, Pierce Lalor, Peter Dockery and Ciaran G. Morrison

# C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis

## 2012; 11(20) http://dx.doi.org/10.4161/cc.21986

http://www.landesbioscience.com/journals/cc/article/21986

#### **Supplemental Figure Legends**

#### Supplemental figure 1. Composition of split centrioles following IR

Immunofluorescence microscopy analysis of untreated and IR-split centrioles. hTERT-RPE1 cells were fixed 48 hours after 5 Gy IR, where indicated, then stained with the indicated antibodies (green) and  $\gamma$ -tubulin (red). Cells were counterstained with DAPI to visualise the DNA. Inserts show blow-ups of centrioles. Scale bar, 10 µm.

#### Supplemental figure 2. Comparison of different siRNA and culture conditions

A. Immunoblot analysis of RNAi efficiency. Cells were treated with 50nM siRNA for the indicated times.  $\alpha$ -tubulin was used as a loading control.

**B.** Ciliogenesis in RPE1 cells that had been siRNA treated for 48 hours before being serum starved in medium containing 0.2% NCS for 48 hours, then fixed and stained for acetylated tubulin and  $\gamma$ -tubulin. Data show the mean  $\pm$  s.e.m of 3 separate experiments in which at least 100 cells were counted. \*\*\*P  $\leq$ 0.001 compared with scrambled siRNA control.

C. Ciliogenesis in RPE1 cells that had been siRNA treated for 48 hours before being serum starved in serum-free medium (SFM) for 48 hours, then fixed and stained for acetylated tubulin and  $\gamma$ -tubulin. Data show the mean  $\pm$  s.e.m of 3 separate experiments in which at least 100 cells were counted. \* P  $\leq$ 0.05 compared with scrambled siRNA control.

1

#### **Supplemental Tables**

#### Supplemental Table 1: Dharmacon On-target smart pool siRNA sequences used

in this study

#### NEK2

CGAUCUGGCUAGUGUAAUU GCAGACAGAUCCUGGGCAU GGCAAUACUUAGAUGAAGA GCUAGAAUAUUAAACCAUG

#### *CEP250*

GAGCAGAGCUACAGCGAAU GGACCUCGCUGAACAACUA AAGCUGACGUGGUGAAUAA GAGAAUAUGAUCCAAGAGA

#### CROCC

AGGCAGAGAGCGAGCGCAU GCGAGCAGGUGCAGACGUU GGGAGAUUGUCACCCGCAA CAGCGACUCCAGCGUGAAA

#### KIZUNA

UGUCCAAGCUCAUGUCGUA GAGAAAUACUGACACGGGA CCAAGAAUAUUUAAAGCGA GAAUAUUGGCAGCGGUGCA

#### CHK1

CAAGAUGUGUGGUACUUUA GAGAAGGCAAUAUCCAAUA CCACAUGUCCUGAUCAUAU GAAGUUGGGCUAUCAAUGG

Supplemental Table 2: Qiagen custom siRNA target sequences used in this study

#### *CEP250* CUGGAAGAGCGUCUAACUGAU

#### **CROCC** (AA)AAGCCAGUCUAGACAAGGA

*CEP164* CAGGUGACAUUUACUAUUUCA



