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I. MODEL

Let us consider a haploid asexual population of size N. Each individual is marked by a phe-

notypic label, denoted by Gi ∈ {1, 2, . . . ,M}. Such phenotypes could refer to any observable trait,

such as body mass, skin color, means of communication, and so on. Although we could also con-

sider multidimensional phenotypic spaces, for simplicity, we assume a finite discrete phenotypic

space represented by integers. We further assume that these individual phenotypes are neutral and

symmetric to each other. That is, acquiring one of these phenotypes does not naturally grant an

advantage or disadvantage in fitness, but instead it is the interactions between the focal individual

and its social partners that determine its fitness. Specifically, if two interacting individuals have the

same phenotype, they both obtain a; whereas if they have different phenotypes, they both obtain

b. Thus the payoff matrix is

Gi G j,i

Gi a b

G j,i b a

. (1)

Accordingly the interactions can be categorized into three cases:

• a = b. All individuals obtain a constant payoff from each pairwise social interaction, re-

gardless of the phenotypic similarity between them and their social partners.

• a > b. Social interactions between individuals yield more benefits to coordination. This

payoff structure captures many real social interactions, where there are synergistic effects

and the individuals involved are better off if they share the same phenotype.

• a < b. Social interactions between individuals yield more benefits to anti-coordination.

This payoff structure also characterizes many real social interactions, where there are gains

to specialization and individuals are better off if they complement each other in their pheno-

types.

An individual’s tendency to initiate interactions with others who have the same phenotype is

described by a continuous preference pi ∈ [0, 1]. With probability pi, individual i chooses to

initiate an interaction with an individual of the same phenotype; otherwise with probability 1− pi,

the individual chooses to initiate an interaction with an individual with a different phenotype. For

two limiting cases, pi → 1 individuals choose to interact only with those who share the same

phenotype (homophily) and pi → 0 individuals always choose to interact with individuals with

3



different phenotypes (heterophily). For other pi values between 0 and 1, there is a balance between

homophily and heterophily. We say an individual shows a tendency towards homophily if pi > 1/2

(‘birds of a feather flock together’); otherwise it shows a tendency towards heterophily (‘opposites

attract’).

We assume that in order for an interaction to occur, both individuals must choose it. Thus,

the probability of a social interaction between two individuals depends on their preferences and

phenotypic similarity. Let us specifically consider two individuals i and j, with preferences pi and

p j, respectively. If they share the same phenotypic trait, then with probability pi p j, they mutually

select each other as social partners and thus they obtain a payoff a each. Whereas, if they have

different phenotypic traits, then with probability (1 − pi)(1 − p j), they mutually choose each other

as social partners and so they obtain a payoff b each.

An individual’s fitness can be expressed as an exponential function of its payoff, i.e., fitness =

exp[β ·payoff], where β is the intensity of selection. For weak selection (β � 1), we have fitness ∼

1 + β · payoff; that is, individuals’ payoffs are just small perturbations to their baseline fitness.

We assume individuals reproduce proportional to their fitness. Reproduction can be genetic

(more fit individuals literally reproduce more) or cultural (less fit individuals copy the behavior

of fitter individuals). Specifically an individual i is chosen with probability proportional to its

fitness fi. An offspring is being reproduced that replaces one random individual in the population.

Reproduction is, however, subject to mutation. With probability v, the offspring chooses at random

one of the M available phenotypes; otherwise it inherits the parental phenotype. An offspring

inherits its parent’s preference with probability 1 − u; otherwise with probability u, it chooses a

novel preference. We consider both global and local mutations. For local mutation, the offspring

chooses a preference drawn from a Gaussian distribution with the parental value as mean and with

a small standard deviation. For global mutation, the offspring adopts a preference that is randomly

and uniformly drawn over the interval [0, 1].

We are interested in the stationary distribution of preferences that is reached in this mutation-

selection process. In what follows, we shall derive the analytical conditions for the evolution of

homophily and perform extensive agent-based simulations to validate our analytical predictions.
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II. THEORETICAL ANALYSIS

In our model, both phenotypes and preferences for homophily are heritable traits. To determine

how these coevolve, we must determine which preference is most favored by natural selection (i.e.,

performs the best) in the long run?

A. Mutation-selection equilibrium

For mathematical tractability and without loss of generality, let us start by analyzing the evo-

lutionary dynamics involving an arbitrary set of n ≥ 2 discrete preferences. In the limit of large

n � 1, the results will approximate those for continuous preferences.

Denote by xi the abundance of preference i (i = 1, 2, · · · , n),
∑n

j=1 x j = 1. Denote by Gi

the phenotype of individual i, Gi = {1, 2, · · · ,M}. Let xl
i be the abundance of individuals with

preference i having the phenotype l,
∑M

l=1 xl
i = xi, and let xl

∗ be the abundance of individuals with

the phenotype l, xl
∗ =

∑n
k=1 xl

k.

Let A = {πi j} be the symmetric n×n payoff matrix, where πi j is the payoff to an individual with

preference i interacting with an individual with preference j. In our model, individuals acquire

payoffs only from each of their successful interactions. For the purpose of payoff accounting, we

here use the expected payoff an individual obtains from each encounter. For notational simplicity,

we can formally write

πi j = δi jπ
S
i j + (1 − δi j)πD

i j, (2)

where δi j = 1 if individuals i and j share the same phenotype (Gi = G j), otherwise δi j = 0, and the

expected payoffs are given by

πS
i j = api p j, (3)

πD
i j = b(1 − pi)(1 − p j). (4)

We here consider a simple unbiased matching process, in which each individual is equally likely

to meet with everyone else. Under this assumption, individuals meet each other in proportion to

the abundance of each phenotype. We shall address matching bias in our analysis later on.

Specifically, the matching process can be described by an n × n matrix Q = {qi j}, where qi j is

the total number of meetings between individuals with preferences i and j per unit of time. For
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notational convenience, we can formally write

qi j = δi jqS
i j + (1 − δi j)qD

i j, (5)

where

qS
i j = N2

M∑
l=1

xl
ix

l
j, (6)

qD
i j = N2

M∑
l=1

M∑
r=1,r,l

xl
ix

r
j. (7)

Then the payoff of an individual with preference k can be formally written as Pk =∑
j πk jqk j/(xkN). The fitness of an individual with preference k is given by fk = exp(βPk). The

total population fitness is
∑

k Nxk fk, where N is the population size. Evolutionary updating oc-

curs according to a frequency-dependent Moran process (see the model description above). In an

update event, the average change of xk due to selection can be written as:

∆xsel
k = xk

(
fk∑

j Nx j f j
+ 1 −

1
N

)
− xk. (8)

For weak selection, the above equation can be linearized in the leading order of β:

∆xsel
k =

β

N
xk

∑
j

πk jqk j/(xkN) −
∑

i

∑
j

xiπi jqi j/(xiN)

 + O(β). (9)

Averaging the above change over all possible population states, we can obtain the expected change

in the stationary state in the leading order of β (from now on, for simplicity we will omit higher

orders of β ): 〈
∆xsel

k

〉
=

β

N2

∑
j

〈πk jqk j〉 −
∑

i

∑
j

〈
xkπi jqi j

〉 . (10)

According to the perturbation method of games developed in refs. [1, 2], in the limit of weak

selection the average 〈·〉 can be taken over the stationary population state in neutral evolution

when β = 0.

The average change of xk due to preference mutation is given by [(1− xk)/n− xk(n− 1)/n]/N =

(1/n − xk)/N. Thus the total expected change ∆xtot
k in the mutation-selection equilibrium is:

〈∆xtot
k 〉 = (1 − u)〈∆xsel

k 〉 +
u
N
〈(

1
n
− xk)〉 = 0. (11)

It follows that the stationary frequency 〈xk〉 is given by:

〈xk〉 =
1
n

+
β(1 − u)

Nu

∑
j

〈πk jqk j〉 −
∑

i

∑
j

〈
xkπi jqi j

〉 . (12)
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B. Selection criteria

We say natural selection favors a preference k if its abundance is greater than 1/n in the sta-

tionary state. We thus obtain the condition for preference k to be favored by natural selection:∑
j

〈πk jqk j〉 −
∑

i

∑
j

〈
xkπi jqi j

〉
> 0. (13)

Following prior work [2, 3], we can simplify the calculations using the symmetry condition.

Under neutral evolution, different preferences can be seen as different types of individuals, and

hence index permutations do not result in any changes. Here we need to consider only five

cases [3]: i = j = k, i = j , k, i = k , j, j = k , i, and i , j , k , i.

We can further rewrite the condition (13) as∑
j

〈πk jqk j〉 −
∑

i

∑
j

〈
xkπi jqi j

〉
=

∑
j

〈πk jqk j〉 − πkk〈xkqkk〉 −
∑
i,k

πii〈xkqii〉 −
∑
j,k

πk j〈xkqk j〉 −
∑
i,k

πik〈xkqik〉 −
∑
i, j,k

πi j〈xkqi j〉

= πkk〈qkk〉 + 〈qk j〉

∑
j

πk j − πkk

 − πkk〈xkqkk〉 − 〈xkqii〉

∑
i

πii − πkk

 − 〈xkqk j〉

∑
j

πk j − πkk


−〈xkqik〉

∑
i

πik − πkk

 − 〈xkqi j〉

∑
i, j

πi j −
∑

i

πki −
∑

i

πik −
∑

i

πii + 2πkk

 (14)

Recollecting the terms in the above equation leads to∑
j

〈πk jqk j〉 −
∑

i

∑
j

〈
xkπi jqi j

〉
= πkk

(
〈qkk〉 − 〈qk j〉 − 〈xkqkk〉 + 〈xkqii〉 + 〈xkqk j〉 + 〈xkqik〉 − 2〈xkqi j〉

)︸                                                                             ︷︷                                                                             ︸
α

+

∑
i πii

n
n
(
〈xkqi j〉 − 〈xkqii〉

)︸                  ︷︷                  ︸
δ

+

∑
j πk j

n
n
(
〈qk j〉 − 〈xkqk j〉 + 〈xkqi j〉〉

)︸                              ︷︷                              ︸
β

+

∑
j π jk

n
n
(
〈xkqi j〉 − 〈xkq jk〉

)︸                  ︷︷                  ︸
γ

+

∑
i, j πi j

n2

(
−n2〈xkqi j〉

)︸        ︷︷        ︸
ε

. (15)
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Using the symmetry condition we can further show that

α + δ = −(n − 1)〈xkqii〉 + (n − 2)〈xkqi j〉 + 〈qkk〉 − 〈qk j〉 − 〈xkqkk〉 + 〈xkqk j〉 + 〈xkq jk〉

= −(n − 1)〈xkqii〉 + (n − 2)〈xkqi j〉 + 〈qkk〉 − 〈qk j〉 − 〈qkk〉 + (n − 1)〈xkqii〉

+〈qk j〉 − 〈xkqik〉 − (n − 2)〈xkqi j〉 + 〈xkqik〉 = 0, (16)

and also

β + γ + ε = n
(
〈qk j〉 + 2〈xkqi j〉 − 〈xkqk j〉 − 〈xkq jk〉 − n〈xkqi j〉

)
= n

∑
i

xi〈qk j〉 + 2〈xkqi j〉 − 〈xkqk j〉 − 〈xkq jk〉 − n〈xkqi j〉


= n

(
(n − 2)〈xkqi j〉 + 〈xkqk j〉 + 〈xkq jk〉 − 〈xkqk j〉 − 〈xkq jk〉 + (2 − n)〈xkqi j〉

)
= 0.(17)

Denote πk∗ =
∑

j πk j/n, π∗k =
∑

j π jk/n, π∗∗ =
∑

j π j j/n, and π̄ =
∑

i
∑

j πi j/n2. The preference

selection condition now has the following form [3]:

λ1(πkk − π∗∗) + λ2(πk∗ − π∗k) + λ3(πk∗ − π) > 0, (18)

where we have

λ1 ∝ 〈xkqii〉 − 〈xkqi j〉, (19)

λ2 ∝ 〈xkq jk〉 − 〈xkqi j〉, (20)

λ3 ∝ n〈xkqi j〉. (21)

Substituting Eqs. (2) and (5) into the above condition, we finally arrive at the preference selec-

tion condition [
λS

1(πS
kk − π

S
∗∗) + λS

2(πS
k∗ − π

S
∗k) + λS

3(πS
k∗ − π

S)
]

(22)

+

[
λD

1 (πD
kk − π

D
∗∗) + λD

2 (πD
k∗ − π

D
∗k) + λD

3 (πD
k∗ − π

D)
]
> 0,

where, up to a positive common factor, these structural coefficients are given by

λS
1 ∝ 〈xkxl

ix
l
i〉 − 〈xkxl

ix
l
j〉, (23)

λS
2 ∝ 〈xkxl

kxl
j〉 − 〈xkxl

ix
l
j〉, (24)

λS
3 ∝ n〈xkxl

ix
l
j〉, (25)
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and

λD
1 ∝ 〈xkxl

ix
r
i 〉 − 〈xkxl

ix
r
j〉, (26)

λD
2 ∝ 〈xkxl

kxr
j〉 − 〈xkxl

ix
r
j〉 (27)

λD
3 ∝ n〈xkxl

ix
r
j〉. (28)

Note that, in the above formula, we write
∑M

l=1 xl
ix

l
j as xl

ix
l
j and

∑M
l=1

∑M
r=1,r,l xl

ix
r
j as xl

ix
r
j for nota-

tional simplicity.

C. Formula for continuous preferences

The selection condition derived for multiple discrete preferences can be extended to the case

of continuous preferences [4]. To do this, we partition the interval [0, 1] into n small segments of

equal length. For sufficiently large number of n, the sums in the condition (22) can be replaced by

integrals. Note that in this continuum limit, the stationary abundance of preferences takes the form

of the probability density function of the preference distribution. The condition for preference p

to be selected becomes

D(p) = λS
1[AS(p, p) −

∫ 1

0
AS(q, q)dq] + λS

2[
∫ 1

0
AS(p, q)dq −

∫ 1

0
AS(q, p)dq]

+ λS
3[
∫ 1

0
AS(p, q)dq −

∫ 1

0

∫ 1

0
AS(p, q)dpdq] + λD

1 [AD(p, p) −
∫ 1

0
AD(q, q)dq]

+ λD
2 [

∫ 1

0
AD(p, q)dq −

∫ 1

0
AD(q, p)dq] + λD

3 [
∫ 1

0
AD(p, q)dq −

∫ 1

0

∫ 1

0
AD(p, q)dpdq]

> 0, (29)

where AS(p, q) = apq and AD(p, q) = b(1 − p)(1 − q), and these structural coefficients λS
i ’s and

λD
i ’s are the same as given for multiple discrete preferences.

D. Triplet correlations at neutrality

Using coalescent theory [5], we are able to calculate these structural coefficients λS
i ’s and λD

i ’s.

For brevity, we here only sketch the calculation procedures. For a more detailed description of

coalescent theory and its recent combination with evolutionary game theory, we refer to refs. [1–

3, 5].
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Let us first interpret these triplet correlations. Take the average 〈xkxl
ix

l
i〉 for an example. It is

the expected probability that when we randomly choose three individuals from the population, two

of them have the same preference and phenotype, while the third one has a different preference.

Other triplet correlations can be explained similarly.

It is helpful to compute coalescence in the continuous time limit, τ, by rescaling discrete time

with τ = 2t/N2. In this new time scale, we adopt the rescaled mutation rates, µ = Nu for preference

mutations, and ν = Nv for phenotypic mutations. The trick of coalescent theory is tracing any two

individual lineages backward in time. After a certain time τ2 (the ‘coalescent time’), we can always

find their most recent common ancestor. The probability density of τ2 is given by [5]

T2(τ2) = e−τ2 . (30)

We can also obtain the coalescent time density function T3(τ2, τ3) for three randomly chosen indi-

viduals. In this case, any two of them coalesce first back at time τ3, and then this lineage coalesces

with the remaining one back at time τ2. We thus have [5]

T3(τ2, τ3) = 3e−3τ3e−τ2 . (31)

We identify two identical individuals (i.e., they both have the same preference and phenotype)

immediately after the coalescence of the two chosen lineages. For the Moran process in our

model, the preference along each lineage mutates with rate Nu/2 = µ/2 and the phenotype with

rate Nv/2 = ν/2. If at least one preference mutation occurs along the two lineages after their

coalescence, the two individuals have the same preference with probability 1/n. Similarly, if at

least one phenotypic mutation happens along the two lineages after their coalescence, the two

individuals still have the same phenotypes with probability 1/M. We can obtain the probability

that for two randomly chosen individuals, they still have the same preference (have the same

phenotype) after their coalescent time τ2, respectively:

s2(τ2) = e−µτ2 +
1 − e−µτ2

n
, (32)

g2(τ2) = e−ντ2 +
1 − e−ντ2

M
. (33)

In the same vein, the probability s3(τ2, τ3) that three randomly chosen individuals all have the

same preference after their coalescent time τ2 + τ3 is given by [2]

s3(τ2, τ3) =
1
n2

[
s2(τ2)

(
1 + 3(n − 1)e−µτ3 + (n − 1)(n − 2)e−3/2µτ3

)
+ (1 − s2(τ2))

(
1 + (n − 3)e−µτ3 − (n − 2)e−3/2µτ3

)]
(34)
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Based on these coalescence quantities, we now can calculate the following pair/triplet correla-

tions associated with λS
i :

〈xl
kxl

k〉 =
1
n

∫ ∞

0
T2(τ2)s2(τ2)g2(τ2)dτ2, (35)

〈xkxl
kxl

k〉 =
1
n

1
3

∫ ∞

0

∫ ∞

0
T3(τ2, τ3)s3(τ2, τ3)[g2(τ3) + g2(τ2 + τ3) + g2(τ2 + τ3)]dτ2dτ3, (36)

〈xkxl
kxl
∗〉 =

1
n

1
3

∫ ∞

0

∫ ∞

0
T3(τ2, τ3)[s2(τ3)g2(τ2 + τ3) + s2(τ2 + τ3)g2(τ3)

+ s2(τ2 + τ3)g2(τ2 + τ3)]dτ2dτ3. (37)

The factor 1/n in the right hand side of above equations accounts for the probability of randomly

selecting an individual with preference k. This probability is given by 1/n under neutral evolution.

Using symmetry, we can directly calculate other correlations as listed below:

〈xl
ix

l
j〉 =

1
n − 1

(
〈xl

ix
l
∗〉 − 〈x

l
ix

l
i〉
)
, (38)

〈xkxl
kxl

j〉 =
1

n − 1

(
〈xkxl

kxl
∗〉 − 〈xkxl

kxl
k〉
)
, (39)

〈xkxl
ix

l
j〉 =

1
n − 2

(
〈xl

ix
l
j〉 − 2〈xkxl

kxl
j〉
)
, (40)

〈xkxl
ix

l
i〉 =

1
n − 1

(
〈xl

ix
l
i〉 − 〈xkxl

kxl
k〉
)
, (41)

where we use xl
∗ = xl

i +
∑

j,i xl
j to get the first two identities, and for the last two we use xk =

1 −
∑

j,k x j.

Analogously, we calculate the triplet correlations associated with λD
i . The probability z2(τ2)

of two randomly chosen individuals having different phenotypes since their coalescent time τ2 is

given by:

z2(τ2) =
M − 1

M
(
1 − e−ντ2

)
. (42)

Then we can calculate the following pair/triplet correlations:

〈xl
ix

r
i 〉 =

1
n

∫ ∞

0
T2(τ2)s2(τ2)z2(τ2)dτ2, (43)

〈xkxl
kxr

k〉 =
1
n

1
3

∫ ∞

0

∫ ∞

0
T3(τ2, τ3)s3(τ2, τ3)[z2(τ3) + z2(τ2 + τ3) + z2(τ2 + τ3)]dτ2dτ3, (44)

〈xkxl
kxr
∗〉 =

1
n

1
3

∫ ∞

0

∫ ∞

0
T3(τ2, τ3)[s2(τ3)z2(τ2 + τ3) + s2(τ2 + τ3)z2(τ3)

+ s2(τ2 + τ3)z2(τ2 + τ3)]dτ2dτ3, (45)

〈xl
ix

r
j〉 =

1
n(n − 1)

∫ ∞

0
T2(τ2)(1 − s2(τ2))z2(τ2)dτ2. (46)
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We should note that the factor 1/[n(n − 1)] in Eq. (46) takes into account the fact that there are

n(n − 1) different combinations of the preference index satisfying i , j.

Again, we can calculate the following correlations using symmetry:

〈xkxl
kxr

j〉 =
1

n − 1

(
〈xkxl

kxr
∗〉 − 〈xkxl

kxr
k〉
)
, (47)

〈xkxl
ix

r
j〉 =

1
n − 2

(
〈xl

ix
r
j〉 − 2〈xkxl

kxr
j〉
)
, (48)

〈xkxl
ix

r
i 〉 =

1
n − 1

(
〈xl

ix
r
i 〉 − 〈xkxl

kxr
k〉
)
. (49)

Omitting some intermediate calculations, below we give the explicit expressions of λS
i and λD

i

in terms up to a same positive common factor:

λS
1 ∝ (1 + ν)(3 + µ + ν)(M(2 + µ)(3 + 3µ + 2ν) + ν(4 + 3µ + 2ν)), (50)

λS
2 ∝ M(2 + µ)

(
9 + 3µ(4 + µ) + 6ν + 5µν + ν2

)
+ ν

(
3µ3 + 2(2 + ν)(3 + ν)2 + µ2(21 + 8ν) + µ(49 + ν(38 + 7ν))

)
, (51)

λS
3 ∝ µ

[
M(2 + µ)

(
9 + 3µ(4 + µ) + 7ν + 5µν + 2ν2

)
+ ν

(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

)]
. (52)

λD
1 ∝ (M − 1)ν(1 + ν)(3 + µ + ν)(4 + 3µ + 2ν), (53)

λD
2 ∝ (M − 1)ν

(
3µ3 + 2(2 + ν)(3 + ν)2 + µ2(21 + 8ν) + µ(49 + ν(38 + 7ν))

)
, (54)

λD
3 ∝ (M − 1)µν

(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

)
. (55)

We can see that these λ expressions indeed do not depend on the number of preferences [3], but

are jointly determined by the number of phenotypes M, the preference mutation rate µ, and the

phenotypic mutation rate ν.

Although we derive the selection condition specifically for our model, the same derivations

work for other evolutionary updating rules, for example, the Wright-Fisher process, as the formula

using the coalescent theory is robust to such variations [5].

Having calculated the structural coefficients λS
i ’s and λD

i ’s, we can derive the relative abundance

(probability density) of any preference p. Based on Eq. (12), we can also calculate its equilibrium

frequency (probability density).
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E. Conditions for the evolution of homophily

After some algebra, we obtain the following condition. Preference p is favored by natural

selection (its stationary frequency is greater than the neutral average) if and only if

D(p) = C2(a, b,M, µ, ν)p2 + C1(a, b,M, µ, ν)p + C0(a, b,M, µ, ν) > 0, (56)

where the coefficients Ci’s are

C2 = (1 + ν)(3 + µ + ν)(b(−1 + M)ν(4 + 3µ + 2ν) + a(M(2 + µ)(3 + 3µ + 2ν) + ν(4 + 3µ + 2ν))),

C1 =
1
2

(
−b(−1 + M)ν

(
3µ4 + 8(1 + ν)(2 + ν)(3 + ν) + µ3(21 + 8ν) + µ2(60 + 7ν(7 + ν)) +

+2µ(43 + ν(4 + ν)(14 + ν))) + aµ
(
M(2 + µ)

(
9 + 3µ(4 + µ) + 7ν + 5µν + 2ν2

)
+

+ν
(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

)))
,

C0 =
1

24

(
−a

(
M(2 + µ)

(
9µ3 + 4(1 + ν)(3 + ν)(3 + 2ν) + 3µ2(16 + 9ν) + µ(3 + 2ν)(25 + 13ν)

)
+

+ν
(
9µ4 + 8(1 + ν)(2 + ν)(3 + ν) + 3µ2(4 + ν)(13 + 7ν) + 3µ3(21 + 8ν) +

+2µ(7 + 3ν)(11 + ν(9 + ν)))) + b(−1 + M)ν
(
9µ4 + 16(1 + ν)(2 + ν)(3 + ν) +

+3µ3(21 + 8ν) + 3µ2(56 + ν(45 + 7ν)) + µ(206 + 2ν(132 + ν(44 + 3ν)))
))
. (57)

Natural selection acts against preference p ifD(p) < 0. The quadratic functionD(p) represents

a series of parabolas, depending on the model parameters (Figs. S1 and S2). We can prove that

there always exists at least one interior root pc ∈ (0, 1) satisfying D(p) = 0. We call such pc the

critical preference for homophily.

The population tends to evolve homophilic preferences, i.e., the population average 〈p〉 > 1/2,

if and only if ∫ 1

0
D(p)dp > 0, (58)

which leads to the following simplified condition:

a > Kb, (59)

where the term K is given by

K =
ν(µ + ν + 2)(M − 1)

ν(µ + ν + 2) + (µ + 2ν + 3)M
(60)

We note that the function K is always positive and monotonically increases with the preference

mutation rate, µ, the phenotypic mutation rate, ν, and the number of phenotypes, M.
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FIG. S1: Plots of the selection condition function D(p) for increasing payoff values a at fixed pay-

off value b (b > 0). Parameters: µ = 1.2, ν = 1.8, M = 3, b = 1, (a–k), respectively, a =

−3,−14/41, 100/683, 150/683, 562/1475, 24/59, 5/9, 700/901, 758/901, 220/109, 5.

In the main text, we focus on the results for positive payoff values a and b. In what follows,

we shall provide general results for the whole parameter space (b, a) for completeness. Positive

payoff values suggest synergistic (beneficial) interactions, while negative ones suggest antagonistic

interactions.

When both types of associations are beneficial (a, b > 0), increases in µ, ν, and M mean that

the benefit to coordination must be higher in order for homophily to evolve. In addition to the

results (a, b > 0) shown in the main text, Fig. S3 displays the results with the full set of (b, a)

points in [−0.5, 0.5]2. Again, we find excellent agreement between our theoretical predictions and

simulation results.
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FIG. S2: Plots of the selection condition function D(p) for increasing payoff value a at fixed

payoff value b (b < 0). These plots are the ‘mirror’ cases with respect to Fig. S1. Pa-

rameters: µ = 1.2, ν = 1.8, M = 3, b = −1, (a–k), respectively, a =

−5,−220/109,−758/901,−700/901,−5/9,−24/59,−562/1475,−150/683,−100/683, 14/41, 3.

We can understand these results as follows. When natural selection would otherwise favor ho-

mophily, any increase in (unbiased) mutations in preferences tends to brings down the population

equilibrium to 1/2. Increasing the phenotypic mutation raises the chance of meeting individuals of

different phenotypes and, consequently, the overall benefit of heterophilic interactions. Likewise,

increasing the number of phenotypic variations, M, makes the population more diverse, and in ef-

fect reduces the average number of individuals having the same phenotype. As a result, increasing

M also requires a larger advantage to homophilic interactions to offset the potential benefit from

interacting with numerous individuals of different phenotypes.
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FIG. S3: Population average 〈p〉 as a function of (b, a). Parameters: N = 50, β = 5 × 10−3, (a) M = 5,

u = 0.04, v = 0.02, (b)M = 20, u = 0.04, v = 0.02, (c) M = 5, u = 0.2, v = 0.02, (d) M = 5, u = 0.04,

v = 0.1. Results are averaged over T = 108 time steps.

If, on the other hand, anti-coordination payoffs are negative (b < 0), then increases in µ, ν,

and M all increase heterophilic interactions and therefore decrease their payoffs, making it easier

for homophily to evolve. In fact, we retain the same condition – homophily evolves provided that

a > Kb.

If the payoff values a, b have different signs such that ab < 0, natural selection favors the

evolution of homophily if a > 0 > b; that is, the homophilic interactions are beneficial (a > 0)

while the heterophilic interactions are harmful (b < 0). For other special cases with ab = 0, natural

selection trivially favors the evolution of homophily if a > b = 0 or b < a = 0.
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1. Critical slopes

The critical condition (59) can be seen as a critical line in the two-dimensional (b, a) plane. For

a values above this critical line (a > Kb), natural selection favors the evolution of homophily. For

a values below this line (a < Kb), natural selection favors the evolution of heterophily.

Notably, the condition a = Kb represents a symmetry breaking point. For a = Kb, the pref-

erence selection function D(p) is symmetric with respect to p = 1/2 (Figs. S1g and S1e). If two

preferences are at equal distance from p = 1/2, they are equally abundant in the population. For

a , Kb, the distribution is shifted to favor one of the two extreme trait values over the other.

For example, the preference p = 1 (perfect homophily) is more abundant than p = 0 (perfect

heterophily) in the mutation-selection equilibrium if a > Kb (Figs. S1h and S1f).

Interestingly, when the condition a = Kb holds, there exist two critical preferences for ho-

mophily, pc = 3±
√

3
6 , which do not depend on the model parameters. At this symmetry breaking

point with positive interactions (a = Kb > 0), natural selection favors extreme preferences close

to the boundary p < 3−
√

3
6 and p > 3+

√
3

6 (Fig. S1g). In contrast, for antagonistic interactions

a = Kb < 0, natural selection favors intermediate preferences 3−
√

3
6 < p < 3+

√
3

6 (Fig. S1e).

In the two-dimensional (b, a) plane, there exist other critical slopes. If C2 = 0, the preference

selection function D(p) degenerates to a linear function. In this case, the critical preference for

homophily is pc = 1/2, and this does not depend on other model parameters (Fig. S4a). The

condition C2 = 0 gives the critical slope K2:

K2 =
ν(3µ + 2ν + 4)(1 − M)

(µ + 2)(3µ + 2ν + 3)M + ν(3µ + 2ν + 4)
. (61)

We can see that K2 is always negative, K2 < 0. If a > K2b, we have C2 > 0 and therefore the

parabolaD(p) opens upward. Otherwise, if a < K2b, then C2 < 0 and therefore the parabolaD(p)

opens downward. In other words, the convexity of the preference selection functionD(p) changes

from convex upward to convex downward across the critical line a = K2b.

Whether there exist two or one single critical pc ∈ (0, 1) is determined by two other critical

slopes, denoted by K3 and K4, respectively. By settingD(0) = C0 = 0 andD(1) = C2+C1+C0 = 0,

respectively, we can obtain the explicit expressions of K3 and K4. Moreover, we can show that

K3 > K > K4 > 0. There exist two critical pc ∈ (0, 1) if K4|b| < |a| < K3|b| (Fig. S4b). Otherwise,

there is only one single critical pc ∈ (0, 1).

Whether the vertex (tip) of the parabola D(p) is located within the region [0, 1] is determined

by another two critical slopes, denoted by K5 and K6, respectively. The axis of symmetry is given
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FIG. S4: Stationary distributions of preferences for (a) a = −14/41 and (b) a = 700/901. These two plots

of simulation results correspond to the theoretical predictions in fig S1b and S1i, respectively. Parameters:

N = 30, M = 3, β = 0.005, u = 0.04, v = 0.06, b = 1. Results are averaged over T = 109 time steps.

by p = − C1
2C2

. Therefore, K5 and K6 can be obtained, respectively, by setting − C1
2C2

= 0 and

−
C1
2C2

= 1. Furthermore, we can show that K5 > K3 > K > K4 > K6 > 0. The preference selection

functionD(p) has one maximum or minimum point within [0, 1] if K6|b| ≤ |a| ≤ K5|b|. Otherwise,

D(p) is monotonic with p within [0, 1].

In the limit of low preference mutation, µ→ 0, these critical slopes have simple forms and can

be given as follows:

K =
(M − 1)ν(2 + ν)

ν(2 + ν) + M(3 + 2ν)
(62)

K2 =
(1 − M)ν(4 + 2ν)

2M(3 + 2ν) + ν(4 + 2ν)
(63)

K3 =
2(M − 1)ν(4 + 2ν)

2M(3 + 2ν) + ν(4 + 2ν)
(64)

K4 =
(M − 1)ν(2 + ν)

2M(3 + 2ν) + ν(4 + 2ν)
(65)

K5 → ∞ (66)

K6 → 0 (67)

As shown in Fig. S5, in the limit of low preference mutation (µ → 0) and high phenotypic
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mutation (ν→ ∞), these critical slopes become

K = M − 1 (68)

K2 = −(M − 1) (69)

K3 = 2(M − 1) (70)

K4 =
M − 1

2
(71)

K5 → ∞ (72)

K6 → 0 (73)

In the limit of high preference mutation, µ→ ∞, these critical slopes become:

K2 = 0, (74)

K = K3 = K4 = K5 = K6 =
ν(M − 1)
ν + M

. (75)

To validate these analytical results, we show the simulation results about two additional pairs

of payoff values a, b satisfying a = K2b and Kb < a < K3b in Fig. S4 (corresponding to Figs. S1b

and S1i). We find excellent agreement between our analytical predictions and simulations.

2. Critical preferences for homophily

The critical preference for homophily, pc, can be obtained by solving the roots of the quadratic

functionD(p) = 0 (a2 + b2 , 0, and a , K2b):

p1,2 =
−C1 ∓

√
C2

1 − 4C2C0

2C2
. (76)

It is easy to prove by contradiction to show that at least one of p1 and p2 lies in the interval

(0, 1). We have pc = {pi | 0 < pi < 1, i = 1, 2}. As shown in the above analysis, the condition

K4|b| < |a| < K3|b| guarantees both preferences p1,2 fall in (0, 1). Otherwise, only one of them lies

in (0, 1). The ranking order of p1,2 changes across the critical line a = K2b. For a > K2b, we have

p1 < p2, while for a < K2b we have p1 > p2.

Figure S5 shows in detail how the two roots p1,2 are located with respect to the interval (0, 1)

for different regions of the (b, a)-plane divided by the critical slopes. In the limits of µ and ν, the

explicit expressions of pc have some interesting extremes. We summarize our results as follows:
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p1 < 0 < p2 < 1

p2 < 0 < p1 < 1

0 < p1 < p2 < 1

0 < p1 < 1 < p2

0 < p2 < p1 < 1

0 < p2 < 1 < p1

K

K2

K3

K4

-4 -2 2 4
b

-20

-10
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20

a

FIG. S5: Critical slopes. These critical lines a = Kib (i = 2, 3, 4) divide the 2-D (b, a)-plane into 6 regions

that determine the critical preferences pc. Shown is the limiting case with µ → 0 and ν → ∞: K = M − 1,

K2 = −(M − 1), K3 = 2(M − 1), K4 = (M − 1)/2.

• µ → 0 and ν → 0. There exists only one critical preference pc = 1
√

3
. Regardless of the

payoff value b, natural selection favors p > 1
√

3
if a > 0; natural selection favors p < 1

√
3

if

a < 0.

• µ → 0 and ν → ∞. These exist two possible critical preferences pc =

3b(M−1)±
√

3
√

a2+b2(M−1)2+ab(1−M)
3(a+b(M−1)) . For positive payoff b values (b > 0), natural selection fa-

vors p >
3b(M−1)+

√
3
√

a2+b2(M−1)2+ab(1−M)
3(a+b(M−1)) if a > 2(M − 1)b; natural selection favors p <

3b(M−1)−
√

3
√

a2+b2(M−1)2+ab(1−M)
3(a+b(M−1)) and p >

3b(M−1)+
√

3
√

a2+b2(M−1)2+ab(1−M)
3(a+b(M−1)) if (M − 1)b/2 < a <

2(M − 1)b; natural selection favors p <
3b(M−1)−

√
3
√

a2+b2(M−1)2+ab(1−M)
3(a+b(M−1)) if a < (M − 1)b/2.

Similar results can be obtained for negative payoff b values, b < 0 (Fig. S5).

• µ → ∞ and any given ν. These exists only one critical preference pc = 1/2. Natural

selection favors p > 1/2 if a > ν(M−1)
ν+M b; otherwise, natural selection favors p < 1/2 if

a < ν(M−1)
ν+M b.
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FIG. S6: Critical pc as a function of a the payoff value a for fixed b and b the payoff value b for fixed a.

Note that the singularity (a = K2b) in (a) a = −14/41 and (b) b = −41/14. Parameters: M = 3, µ = 1.2,

ν = 1.8, (a) b = 1, (b) a = 1. The red and blue lines respectively denote the two zeros of D(p) as given in

Eq. (76).

Figure S6 shows how the values of p1,2 change with the payoff values a, b, respectively. We

can see that when either of the payoff values a, b goes to ±∞, both p1,2 approach some extreme

values and only one of p1,2’s limiting values (that is, pc) lies in (0, 1). Moreover, we find that the

expressions of the critical preference pc can be further simplified if the mutation rate µ approaches

0 or∞. Interestingly, for these limits, pc does not depend on the number of phenotypes, M, or the

phenotypic mutation ν:

• Any given b and a → ∞. For µ → 0, natural selection favors p > pc = 1
√

3
; for µ → ∞,

natural selection favors p > pc = 1
2 .

• Any given b and a → −∞. For µ → 0, natural selection favors p < pc = 1
√

3
; for µ → ∞,

natural selection favors p < pc = 1
2 .

• Any given a and b → ∞. For µ → 0, natural selection favors p < pc = 1 − 1
√

3
; for µ → ∞,

natural selection favors p < pc = 1
2 .

• Any given a and b→ −∞. For µ→ 0, natural selection favors p > pc = 1− 1
√

3
; for µ→ ∞,

natural selection favors p > pc = 1
2 .

21



3. Special cases

To better understand the model, we study some of the simplest special cases (b = 0, a , 0 or

a = 0, b , 0). Assuming zero payoffs for heterophilic or homophilic interactions greatly simplifies

the theoretical analysis. Here we focus on the special case a > b = 0. Other special cases can be

analyzed in the same manner.
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FIG. S7: Special case with a > b = 0. a shows the theoretical critical preference pc as a function of the

preference mutation rate, u, and the phenotypic mutation rate, v. b, c show the stationary distributions of

preferences for low preference mutation u = 0.02 and high preference mutation u = 0.2, respectively. The

solid red lines in (b) and (c) are the theoretical distributions. Parameters: N = 100, M = 2, β = 0.002,

v = 0.06, a = 0.1. Results are averaged over T = 2 × 109 time steps.

Fig. S7 shows that natural selection favors the evolution of homophily. The preference selection

criterion function D(p) monotonically increases with p within the interval [0, 1]. Thus natural

selection always favors perfect homophily (p = 1) most and perfect heterophily (p = 0) least.

There exists only one critical preference pc ∈ (0, 1), such that all preferences p > pc are selected.

The specific value of pc depends on the model parameters: M, µ and ν. As shown in Fig. S7a,

pc decreases with the preference mutation µ while these exists an optimal phenotypic mutation

ν that maximizes pc (holding other parameters fixed). In the limit of low mutation µ → 0, we

find a surprisingly simple expression of pc, which does not depend on the number of phenotypic

variations M or the phenotypic mutation rate ν:

Preference p is favored by natural selection if and only if p >
1
√

3
. (77)

As the preference mutation rate µ increases, this critical value pc approaches 1/2. These analytical

results are confirmed by agent-based simulations (Figs. S7b and S7c).
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In the following, we briefly summarize the results for other special cases:

• a < b = 0. Natural selection favors the evolution of heterophily, that is, 〈p〉 < 1/2. For

µ → 0, natural selection favors preferences p < pc = 1
√

3
. For µ → ∞, natural selection

favors preferences p < pc = 1
2 .

• b > a = 0. Natural selection favors the evolution of heterophily, that is, 〈p〉 < 1/2. For

µ → 0, natural selection favors preferences p < pc = 1 − 1
√

3
. For µ → ∞, natural selection

favors preferences p < pc = 1
2 .

• b < a = 0. Natural selection favors the evolution of homophily, that is, 〈p〉 > 1/2. For

µ → 0, natural selection favors preferences p > pc = 1 − 1
√

3
. For µ → ∞, natural selection

favors preferences p > pc = 1
2 .

We summarize analytical results for the critical preference pc at different limiting cases in Table

I.

F. Biased matching process

So far, we have considered the matching process that governs whether two individuals meet

is proportional to the respective abundance of every phenotype. It is, however, not implausible

that individuals are more likely to meet similar others. To account for such meeting bias, let us

introduce a new parameter φ ∈ [0, 1]: with probability φ individuals are matched with a same-

phenotype individual; otherwise with probability, 1 − φ, individuals are uniformly and randomly

paired up. Hence, the parameter φ characterizes the assortativity in the matching process. For

φ = 0, we have the unbiased matching scenario as studied before. For nonzero φ values, the total

number of matches between individuals with preference i and j, qi j, now becomes

qi j = δi jqS
i j + (1 − δi j)qD

i j, (78)

where we have

qS
i j = N2

M∑
l=1

xl
ix

l
j, (79)

qD
i j = (1 − φ)N2

M∑
l=1

M∑
r=1,r,l

xl
ix

r
j. (80)
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TABLE I: The critical preference for homophily, pc, at limiting cases. An illustrative example (µ → 0,

ν→ ∞) can be found in Fig. S5.

µ ν pc a, b Natural selection favors

µ→ 0 ν→ 0 pc = 1/
√

3 a > 0 p > 1/
√

3

µ→ 0 ν→ 0 pc = 1/
√

3 a < 0 p < 1/
√

3

µ→ 0 ν→ ∞ a pc = p1 b > 0, a < (M − 1)b/2 p < p1

µ→ 0 ν→ ∞ a pc = {p1, p2} b > 0, (M − 1)b/2 < a < 2(M − 1)b p < p1 and p > p2

µ→ 0 ν→ ∞ a pc = p2 b > 0, a > 2(M − 1)b p > p2

µ→ 0 ν→ ∞ a pc = p1 b < 0, a < 2(M − 1)b p < p1

µ→ 0 ν→ ∞ a pc = {p1, p2} b < 0, 2(M − 1)b < a < (M − 1)b/2 p2 < p < p1

µ→ 0 ν→ ∞ a pc = p2 b < 0, a > (M − 1)b/2 p > p2

µ→ ∞ ν > 0 pc = 1/2 a > ν(M−1)
ν+M b p > 1/2

µ→ ∞ ν > 0 pc = 1/2 a < ν(M−1)
ν+M b p < 1/2

µ→ 0 ν > 0 pc = 1/
√

3 a > 0, b = 0 p > 1/
√

3

µ→ 0 ν > 0 pc = 1/
√

3 a < 0, b = 0 p < 1/
√

3

µ→ ∞ ν > 0 pc = 1/2 a > 0, b = 0 p > 1/2

µ→ ∞ ν > 0 pc = 1/2 a < 0, b = 0 p < 1/2

µ→ 0 ν > 0 pc = 1 − 1/
√

3 a = 0, b > 0 p < 1 − 1/
√

3

µ→ 0 ν > 0 pc = 1 − 1/
√

3 a = 0, b < 0 p > 1 − 1/
√

3

µ→ ∞ ν > 0 pc = 1/2 a = 0, b > 0 p < 1/2

µ→ ∞ ν > 0 pc = 1/2 a = 0, b < 0 p > 1/2

a p1 =
3b(M−1)−

√
3
√

a2+b2(M−1)2+ab(1−M)
3(a+b(M−1)) , p2 =

3b(M−1)+
√

3
√

a2+b2(M−1)2+ab(1−M)
3(a+b(M−1)) .

Using the same algebra as we did for the simple version of the model, the condition for prefer-

ence k to be selected becomes [
λS

1(aS
kk − aS

∗∗) + λS
2(aS

k∗ − aS
∗k) + λS

3(aS
k∗ − aS)

]
(81)

+(1 − φ)
[
λD

1 (aD
kk − aD

∗∗) + λD
2 (aD

k∗ − aD
∗k) + λD

3 (aD
k∗ − aD)

]
> 0,

where the structural coefficients λS
i ’s and λD

i ’s are exactly the same as before. In effect, the in-

troduction of matching bias discounts the payoffs obtained from heterophilic interactions. As a
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result, the condition for the population to evolve homophilic preferences is

a > (1 − φ)Kb, (82)

where K is the same as above. Notice that the right hand side is decreasing in φ. This means that

there is an even greater range of payoffs to coordination that allow homophily to evolve.

III. LOCAL MUTATION

So far we have assumed a global mutation mechanism, in which a mutant offspring adopts a

preference randomly and uniformly on the interval [0, 1]. An alternative is to consider a local mu-

tation mechanism, in which a mutant offspring’s preference is drawn from a Gaussian distribution,

with the parental preference as the mean and with a small standard deviation, σ. We study this al-

ternative model using adaptive dynamics to assess the most likely evolutionary path of adaptation.

For this purpose, we only consider the limit of low preference mutation (u→ 0).

For rare preference mutations, the fate of a mutant preference is determined—either it takes

over the population or goes extinct before the next mutant arises. Therefore, the evolutionary

competition of multiple preferences reduces to pairwise invasion dynamics between only two pref-

erences. While standard adaptive dynamics consider the invasion fitness of a mutant against the

resident population [6, 7], here we generalize it to account for the stochasticity in our model [8].

Whether a mutant, y, fares better than the resident preference, x, is described by the selection

condition (22). For µ→ 0, the structural coefficient associated with the term (ak∗ − a) approaches

0. The sum of the remaining terms, denoted by D(y, x), are equivalent to the comparison of

fixation probabilities. The mutant preference x is favored over the resident preference y by natural

selection ifD(y, x) is positive, and otherwise disfavored by natural selection ifD(y, x) is negative.

IfD(y, x) = 0, the two preferences are neutral.

Based on the previous calculations, we can see

D(y, x) = (ν + 1)(ν + 3)(y − x)
[
(a + bK0)(x + y) − 2bK0

]
, (83)

where K0 is limµ→0 K = ν(ν + 2)(M − 1)/ [ν(ν + 2) + (2ν + 3)M], and K is as given in Eq. (60).

Using Eq. (83), we show the pairwise invasion plots in Fig. S8. Mutants are favored over the

resident in the red regions, that is,D(y, x) > 0, and disfavored in the blue regions whereD(y, x) <

0. The (x, y)-plane is divided into four parts, by the two lines y = x and x + y = 2bK0/(a + bK0).
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FIG. S8: Pairwise invasibility plots. Red denotes that mutant preference wins while blue denotes that

resident preference wins. The empty circles represent unstable interior equilibrium (‘repeller’), and the

filled circles denote stable interior equilibrium (‘attractor’). Parameters: M = 3, ν = 2, (a–c) b = 1,

a = 1/4, 16/29, 3, (d–f) b = −1, a = −1/4,−16/29,−3.

Their intersection point, p∗ = bK0/(a + bK0), gives the possible interior equilibrium

p∗ =
bK0

a + bK0
. (84)

Let us further check the existence of p∗ ∈ (0, 1) and its stability. To this end, let us assume that

the mutant preference, y, is drawn from the infinitesimal neighborhood of the resident preference,

x. In this limit, the gradient of the function D(y, x) with respect to y, evaluated at x (∂D(y, x)
∂y |y=x),

gives the most likely direction of evolutionary adaptation. Drawing on classic adaptive dynam-

ics, we can use the following deterministic differential equation to describe the evolution of the

homophilic trait value

ẋ =
∂D(y, x)

∂y
|y=x , (85)

= 2(ν + 1)(ν + 3)[ax + bK0(x − 1)].
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FIG. S9: Simulation results validate the adaptive dynamics analysis. Shown are the distributions of pref-

erences under local mutation. For positive payoff values, adaptive dynamics analysis predicts bistability

(unstable interior equilibrium), and the resulting distribution is U-shaped. In contrast, negative payoff val-

ues a, b, lead to coexistence (stable interior equilibrium) and the resulting distribution is bell-shaped. Note

that due to boundary effects, the frequency distribution precipitously drops around the two extremes: p = 0

and p = 1. The solid blue lines are the theoretical distributions obtained in the limit of rare mutation

(µ → 0). Parameters: N = 30, M = 3, β = 0.005, u = 0.005, σ2 = 0.0005, v = 0.06, (a) a = 0.5, b = 1, (b)

a = −0.5, b = −1. Results are averaged over T = 2 × 109 time steps.

In this way, we can also derive the interior equilibrium p∗ as shown in Eq. (84). Its existence

requires ab > 0, namely, the payoff values a, b must have the same sign. The stability of the

interior equilibrium is determined by the sign of ∂2D(y, x)
∂y2 |y=x = a + K0b. Hence, we have the

following possible cases:

• a = 0 and b = 0. The evolutionary dynamics are completely neutral.

• b = 0. There are no interior equilibria. If a > 0, p∗ = 0 is unstable and p∗ = 1 is stable. If

27



0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0 1

0 . 0 2

0 . 0 3

 l o c a l  m u t a t i o n ,  σ2  =  0 . 0 1
 l o c a l  m u t a t i o n ,  σ2  =  0 . 0 0 1
 g l o b a l  m u t a t i o n

u  = 0 . 0 2a

 
Fre

qu
en

cy

H o m o p h i l i c  t e n d e n c y ,  p

u  =  0 . 2b

FIG. S10: Stationary distributions of preferences under local mutation. Parameters: N = 100, M = 2,

β = 0.002, v = 0.06, a = 0.1, b = 0, (a) u = 0.02, (b) u = 0.2. Results are averaged over T = 2 × 109 time

steps.
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FIG. S11: Population average 〈p〉 as a function of (b, a) under local mutation. Parameters: N = 50,

β = 5 × 10−3, M = 2, u = 0.04, v = 0.06, σ2 = 0.01. Results are averaged over T = 108 time steps.
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a < 0, p∗ = 0 is stable and p∗ = 1 is unstable.

• a = 0. There are no interior equilibria. If b > 0, p∗ = 0 is stable and p∗ = 1 is unstable. If

b < 0, p∗ = 0 is unstable and p∗ = 1 is stable.

• ab > 0. There exists an interior equilibrium. If a, b > 0, the interior equilibrium p∗ = bK0
a+bK0

is unstable and the two boundary points p∗ = 0, 1 are both stable. If a, b < 0, the interior

equilibrium p∗ = bK0
a+bK0

is stable and the two boundary points p∗ = 0, 1 are unstable.

• ab < 0. There are no interior equilibria. If a > 0 > b, p∗ = 0 is unstable and p∗ = 1 is

stable. If a < 0 < b, p∗ = 0 is stable and p∗ = 1 is unstable.

Notably, the evolutionary adaptation of homophilic preferences shows bistability. Specifically,

the interior equilibrium p∗ = bK0/(a + bK0) is a repeller, if both homophilic and heterophilic asso-

ciations are beneficial (a, b > 0) (see Figs. S8a-c). The direction of evolution depends on the initial

conditions. If the initial homophilic preference of the population p < p∗, the population eventu-

ally becomes completely heterophilic (p = 0). Otherwise, if the initial homophilic preference

of the population p > p∗, the population becomes completely heterophilic (p = 1). In contrast,

the interior equilibrium p∗ = bK0/(a + bK0) is an attractor (i.e., coexistence) if both homophilic

and heterophilous associations are antagonistic (a, b < 0) (Figs. S8d-f). In this situation, natural

selection most favors the intermediate homophilic preference p∗.

There is an interesting correspondence between these results for local mutation and those ob-

tained previously for global mutation. In the limit of low preference mutation (µ → 0) and for

payoff values satisfying ab > 0, we can show that the axis of symmetry of the parabolaD(p) is al-

ways located within the region (0, 1), and that its position is exactly the same as given in Eq. (84),

p∗ = bK0/(a + bK0). This result suggests that the maximum of the parabola (if a, b > 0) or its

minimum (if a, b < 0) is reached at the interior point, p∗, which is the singular point shown in the

adaptive dynamics analysis.

For a, b > 0, natural selection favors the evolution of homophily, if and only if p = 1 has a

larger attraction basin than p = 0, that is, p∗ < 1/2. For a, b < 0, natural selection favors the

evolution of homophily, if and only if the attractor p∗ > 1/2. Both conditions lead to a > K0b,

which is identical to the evolutionary condition derived under global mutation. Further, it is not

difficult to show that for ab ≤ 0 the evolution of homophily under local mutation still requires

a > K0b.
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We performed some simulations to corroborate these theoretical insights. Adaptive dynamics

analysis for local mutation shows that positive payoff values a, b > 0 lead to bistability (an unsta-

ble interior equilibrium), and thus the resulting frequency distribution of preferences is U-shaped

(Fig. S9a). Negative payoff values a, b < 0 result in coexistence (a stable interior equilibrium) and

therefore the resulting frequency distribution of preferences is bell-shaped (Fig. S9b). We note

that in the limit of low mutation, the theoretical distribution obtained for global mutation is still a

fairly good approximation for local mutation (Fig. S9).

Compared with Fig. S7, local mutation increases the disparity in frequency between prefer-

ences, leading to more skewed distributions (Fig. S10). We can see that decreasing the standard

deviation in the mutation kernel leads to even more skewed distributions. The frequencies of pref-

erences in the vicinity of p = 0 and p = 1 dramatically plunge due to boundary effects. Figure S11

shows the population average 〈p〉 as a function of the payoff values (b, a) under local mutation.

Our theoretical analysis above suggests that the evolution of homophily under local mutation re-

quires the same critical condition a > Kb as obtained for the global mutation case. As shown in

Fig. S11, the condition a > Kb still works relatively well for local mutation.

IV. STRONG SELECTION

Our analytical theory works very well for weak selection, as evidenced by the close agreement

between theoretical predictions and agent-based simulation results. Increasing the strength of

natural selection, β, magnifies the fitness difference between traits and, as a result, the evolutionary

dynamics become increasingly deterministic.

Figure S12 shows how increasing selection strength acts on the resulting stationary distributions

of homophilic preferences. Here we simulate the simplest special case a > b = 0 as in Fig. S7. We

observe that increasing the selection pressure makes the frequency distributions more skewed and

also shifts the critical preference pc towards the boundary. Increasing the mutation rate, u, also

widens the region of trait values favored by natural selection (cf. Figs. S7 and S12). Under strong

selection, only the extreme value trait, i.e., either p = 0 and p = 1, is selected, depending on the

model parameters specified. These simulations confirm that the above results for weak selection

qualitatively hold for non-weak selection.
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FIG. S12: Effects of selection strength on the evolution of homophily. Parameters: N = 100, M = 2,

v = 0.06, a = 0.1, b = 0, (a) u = 0.02, (b) u = 0.2. Results are averaged over T = 2 × 109 time steps.

V. EXTENSION TO FULL STRATEGY SPACE

In the basic model introduced above, an individual’s homophilic and heterophilic preferences,

denoted by p and q respectively, are in exact tradeoff (i.e., p + q = 1); increasing the homophilic

preference lowers the heterophilic preference and vice versa. In this way, the level of sociality

(namely, the degree of unilateral willingness of engaging in all kinds of potential social interac-

tions, which is well quantified by the unweighted sum p + q) is kept the same for every individual.

For any similar or dissimilar encounter, individuals have to make their own unilateral choices

whether or not to interact, depending on their homophilic preferences.

This constraint can be relaxed by considering the full strategy space, that is, the set of all

(p, q) points in the unit square. To be concrete, each individual’s preference now is described

by a pair of variables, (p, q), within the unit square, [0, 1]2. The homophilic preference p (the

heterophilic preference q, resp.) denotes the probability that an individual agrees to establish a

pairwise social relationship (or interaction) when meeting another individual bearing the same

phenotype (carrying a different phenotype, resp.). The rest of notations are the same as in the
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basic model. The number of phenotypic variations is M. Each individual receives a payoff a (b,

resp.) for every successfully established assortative (disassortative, resp.) relationship based on

bilateral agreement.

Specifically, let us first consider the four binary preferences located in the corners. That is,

(0, 0), ‘solitary’ which has no social interactions at all; (1, 0), ‘coordination’ which forms as-

sortative social interactions exclusively with these carrying the same phenotype; (0, 1), ‘anti-

coordination’ which forms disassortative social interactions exclusively with these carrying dif-

ferent phenotypes; (1, 1), ‘unbiased’ which unselectively forms social interactions with everyone

else, irrespective of the phenotypic similarity. In what follows, we discuss the ranking of the rela-

tive abundance density of these four binary preferences under different conditions, and also derive

conditions for the evolution of homophily.

We adopt the same evolutionary updating rule as used in the basic model. An individual repro-

duces proportional to its fitness, fi = exp(βπi), where β is the intensity of selection and πi is the

accumulated payoff from social interactions. Reproduction is subject to mutation. The strategy

mutation occurs with probability u, in which the offspring chooses a strategy which is randomly

and uniformly drawn from the unit square. The phenotypic mutation happens with probability v,

in which the offspring randomly chooses one out of the total M phenotypes.

Using the same analytical method presented above, we can obtain the relative abundance den-

sity of the preference (p, q) in the mutation-selection equilibrium as follows:

D(p, q) = b(M − 1)
(
−

1
3

+ q2
)
ν(1 + ν)(3 + µ + ν)(4 + 3µ + 2ν)

+ a
(
p2 −

1
3

)
(1 + ν)(3 + µ + ν)(M(2 + µ)(3 + 3µ + 2ν) + ν(4 + 3µ + 2ν))

+
1
4

b(M − 1)(−1 + 2q)µν
(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

)
+

1
4

a(2p − 1)µ
(
M(2 + µ)

(
9 + 3µ(4 + µ) + 7ν + 5µν + 2ν2

)
+

+ν
(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

))
. (86)

Nature selection favors (p, q) if and only ifD(p, q) > 0.

Up to a same constant factor, the population average 〈p〉 and 〈q〉 is given by, respectively,

〈p〉 ∝
1
24

a(2 + µ)(1 + µ + ν)(6 + 3µ + 2ν)(ν(2 + µ + ν) + M(3 + µ + 2ν)), (87)

〈q〉 ∝
1
24

b(M − 1)(2 + µ)ν(1 + µ + ν)(2 + µ + ν)(6 + 3µ + 2ν). (88)
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FIG. S13: Abundance ranking of the four binary preferences under the mutation-selection equilibrium. The

b-axis, the a-axis and the two lines a = Kb and a = −Kb divide the (b, a)-plane into eight regions. The

abundance ranking order of the four preferences, (1, 1), (1, 0), (0, 1), (0, 0), is given for each region.

Parameters: M = 2, µ = 2, and ν = 1.

The condition for that the average homophilic preference 〈p〉 is greater than the average het-

erophilic preference 〈q〉 is:

a > Kb, (89)

where the term K is the same as given in the basic model,

K =
ν(µ + ν + 2)(M − 1)

ν(µ + ν + 2) + (µ + 2ν + 3)M
. (90)

Apart from population averages, we further ask the following question: what is the probability

to find a homophilic individual, who is randomly drawn from the population equilibrium distri-
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bution? The relative probability, Pr{p > q}, is given by integrating the relative abundance density

functionD(p, q) over the region 0 ≤ q < p ≤ 1:

Pr{p > q} =

∫ p=1

p=0

∫ q=p

q=0
D(p, q)dqdp. (91)

We obtain, up to a positive factor,

Pr{p > q} ∝ a (ν(2 + µ + ν) + M(3 + µ + 2ν)) − b(M − 1)ν(2 + µ + ν). (92)

Therefore, it is more likely to find a homophilic individual than a heterophilic individual if Pr{p >

q} > 0. This leads to exactly the same condition a > Kb as derived before.

Furthermore, we find that for fixed q, D(p, q) is an increasing function of p if and only if

a > 0. For fixed p, D(p, q) is an increasing function of q if and only if b > 0. We now can rank

the equilibrium densities of the four binary preferences mentioned above. Note that there exist two

critical lines, given by a = Kb and a = −Kb, which divide the four quadrants into eight regions.

For (b, a) values within each region, the corresponding abundance ranking order of these binary

preferences is given in Fig. S13.

VI. MULTIPLE SETS OF PHENOTYPES

So far, we have considered only one dimension of phenotypes in the analysis. Our theoreti-

cal framework presented here can be readily extended to study multiple sets of phenotypes. For

simplicity, let us specifically consider two sets of phenotypes—cases with more than two sets of

phenotypes can be analyzed analogously.

Let us assume the number of different phenotypes in set 1 is M1 and in set 2 is M2. Payoff

values may vary for different sets of phenotypes, as each set serves a different function in social

interactions. Let us assume that for interactions in set 1, the payoff to homophilic interaction is a

and the payoff to heterophilic interaction is b, whereas in set 2 the payoff to homophilic interaction

is c and the payoff to heterophilic interaction is d. Individuals may have different homophilic pref-

erences across different sets of phenotypes. Let us assume an individual’s homophilic preference

toward the phenotypic set 1 is p, and that toward phenotypic set 2 it is q.

As each set of phenotypes is different in functionality in social interactions, individuals meet

and interact with partners across different phenotypic sets. Specifically, two individuals, i and j,

choose to interact with probability pi p j (with probability qiq j) if they are similar in their pheno-

types in set 1 (set 2, respectively). They choose to interact with probability (1 − pi)(1 − p j) (with
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probability (1 − qi)(1 − q j)) if they are different in their phenotypes in set 1 (set 2, respectively).

This mutual partner selection process leads to a two-layer network of social interactions. The

interaction structure in each layer is tuned by individuals’ homophilic preferences p and q, respec-

tively. However, these two layers of networks are interdependent since payoffs accrued from each

layer jointly contribute to an individual’s overall fitness.

When two randomly chosen individuals, i and j, are matched to form social connections, four

possibilities arise, depending on their phenotypic similarity: (1) they have the same phenotypes

in both set 1 and set 2; (2) they share the same phenotype in set 1 but carry different phenotypes

in set 2; (3) they share the same phenotype in set 2 but carry different phenotypes in set 1; and

(4) they carry different phenotypes in both set 1 and set 2. The expected payoff to individual i is

π1
i j = api p j +cqiq j in case (1), π2

i j = api p j +d(1−qi)(1−q j) in case (2), π3
i j = b(1−pi)(1−p j)+cqiq j

in case (3), π4
i j = b(1 − pi)(1 − p j) + d(1 − qi)(1 − q j) in case (4).

Here we consider an unbiased matching process as before. Denote by xlr
i the fraction of indi-

viduals in the population with preference (pi, qi) and phenotypes (l, r). The total number of en-

counters between individuals with (pi, qi) and with (p j, q j) can be defined for four possible cases

as above; that is, q1
i j = N2 ∑M1

l=1

∑M2
r=1 xlr

i xlr
j in case (1), q2

i j = N2 ∑M1
l=1

∑M2
r=1

∑M2
h=1,h,r xlr

i xlh
j in case

(2), q3
i j = N2 ∑M2

l=1

∑M1
r=1

∑M1
h=1,h,r xrl

i xhl
j in case (3), and q4

i j = N2 ∑M1
t=1

∑M1
l=1,l,t

∑M2
r=1

∑M2
h=1,h,r xtr

i xlh
j

in case (4). Then the expected total payoff to individual i with preference (pi, qi) is πi =∑
m
∑

j π
m
i jq

m
i j/(N

∑
l
∑

r xlr
i ). Using our analytical method introduced before, we can obtain the

following condition for natural selection to favor the preference (pk, qk):

4∑
m=1

λm
1 (πm

kk − π
m
∗∗) + λm

2 (πm
k∗ − π

m
∗k) + λm

3 (πm
k∗ − π

m) > 0, (93)
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where, up to a same positive common factor, the structural coefficients λm
i are given below:

λ1
1 ∝ (1 + ν)(3 + µ + ν)(M1M2(2 + µ)(3 + 3µ + 2ν) + ν(4 + 3µ + 2ν)), (94)

λ1
2 ∝ M1M2(2 + µ)

(
9 + 3µ(4 + µ) + 6ν + 5µν + ν2

)
+ ν

(
3µ3 + 2(2 + ν)(3 + ν)2 + µ2(21 + 8ν) + µ(49 + ν(38 + 7ν))

)
, (95)

λ1
3 ∝ µ

[
M1M2(2 + µ)

(
9 + 3µ(4 + µ) + 7ν + 5µν + 2ν2

)
+ ν

(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

)]
, (96)

λ2
1 ∝ (M2 − 1)ν(1 + ν)(3 + µ + ν)(4 + 3µ + 2ν), (97)

λ2
2 ∝ (M2 − 1)ν

(
3µ3 + 2(2 + ν)(3 + ν)2 + µ2(21 + 8ν) + µ(49 + ν(38 + 7ν))

)
, (98)

λ2
3 ∝ (M2 − 1)µν

(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

)
, (99)

λ3
1 ∝ (M1 − 1)ν(1 + ν)(3 + µ + ν)(4 + 3µ + 2ν), (100)

λ3
2 ∝ (M1 − 1)ν

(
3µ3 + 2(2 + ν)(3 + ν)2 + µ2(21 + 8ν) + µ(49 + ν(38 + 7ν))

)
, (101)

λ3
3 ∝ (M1 − 1)µν

(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν) + µ2(21 + 8ν)

)
(102)

λ4
1 ∝ (M1 − 1)(M2 − 1)ν(1 + ν)(3 + µ + ν)(4 + 3µ + 2ν), (103)

λ4
2 ∝ (M1 − 1)(M2 − 1)ν

(
3µ3 + 2(2 + ν)(3 + ν)2 + µ2(21 + 8ν) + µ(49 + ν(38 + 7ν))

)
, (104)

λ4
3 ∝ (M1 − 1)(M2 − 1)µν

(
34 + 3µ3 + 40ν + 2ν2(8 + ν) + µ(3 + ν)(16 + 7ν)+

µ2(21 + 8ν)
)
. (105)

The selection condition for a continuum of preferences in the unit [0, 1]2 can be obtained by

replacing the sums with integrals in the condition (93). We find that the population tends to evolve

homophilic preferences in phenotypic set 1, i.e., 〈p〉 > 1/2, if the following condition holds:

a > K′b, (106)

where the term K′ is given by

K′ =
ν(µ + ν + 2)(M1 − 1)

ν(µ + ν + 2) + (µ + 2ν + 3)M1
. (107)

Meanwhile, the population tends to evolve homophilic preference in phenotypic set 2, i.e.,

〈q〉 > 1/2, if the following condition holds:

c > K′′d, (108)

where the term K′′ is given by

K′′ =
ν(µ + ν + 2)(M2 − 1)

ν(µ + ν + 2) + (µ + 2ν + 3)M2
. (109)
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We note that these critical conditions for multiple sets of phenotypes are formally identical

with the condition derived for only one phenotypic dimension. As shown in Fig. S14a, homophily

is favored in both phenotypic sets if conditions (106) and (108) are both fulfilled. Otherwise,

homophily is favored in either of the two phenotypic sets if only one of the two conditions holds

(Fig. S14b). If neither of the two conditions is satisfied, natural selection favors heterophily in

both sets (Fig. S14c).

Decreases in the number of phenotypes in both sets (M1 and M2), the preference mutation rate,

u, and the phenotypic mutation rate, v, always make it easier for homophily to evolve, as shown in

Fig. S15. We find good agreement between simulations and our analytical predictions (Figs. S14

and S15). These results are consistent with our above conclusions of single phenotypic dimension,

suggesting that the rule for the evolution of homophily is robust to model variations.

FIG. S14: Natural selection of homophily in two sets of phenotypes. Shown are the population equilibria,

namely, probability density distribution of preferences (p, q) over the unit [0, 1]2, corresponding to (a)

a > K′b and c > K′′d, (b) a > K′b and c < K′′d, and (c) a < K′b and c < K′′d. The scattered points

are simulation results, which agree with our analytical theory. Parameters: N = 50, β = 0.002, M1 = 4,

M2 = 8, u = 0.06, v = 0.02, (a) a = 14/19, b = 1, c = 2/5, d = 1/2, (b) a = 14/19, b = 1, c = 1/10,

d = 1/2, (c) a = 5/19, b = 1, c = 1/10, d = 1/2. Results are averaged over T = 109 time steps.

VII. SUMMARY OF MODELS

We have analytically and by means of simulations studied the evolutionary origins of ho-

mophily. We derive a simple rule for the evolution of homophily, a > Kb. This rule is robust to

model variations, as summarized in Table II. The mathematical framework presented here works

well for weak selection.
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FIG. S15: Evolutionary determinants of homophily in two sets of phenotypes. The conditions a = K′b

and c = K′′d are fulfilled in (a). For other parameters fixed, decreases in (b) the number of phenotypes in

both sets (M1 and M2), (c) the preference mutation rate, u, and (d) the phenotypic mutation rate, v, always

make it easier for homophily to evolve. The scattered points are simulation results, which agree with our

analytical theory. Parameters: N = 50, β = 0.002, a = 9/19, b = 1, c = 3/10, d = 1/2, (a) M1 = 4, M2 = 8,

u = 0.06, v = 0.02, (b) M1 = 2, M2 = 4, u = 0.06, v = 0.02, (c) M1 = 4, M2 = 8, u = 0.02, v = 0.02, (d)

M1 = 4, M2 = 8, u = 0.06, v = 0.01. Results are averaged over T = 109 time steps.

VIII. EMPIRICAL ESTIMATES OF HOMOPHILY

To estimate the average 〈p〉 for a population using real world data, we assume the social network

under consideration is partitioned into M groups, each of size Ni (i = 1, · · · ,M) and
∑

i Ni = N.

The expected total number ni j of links of group i that are with group j can be calculated according
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TABLE II: The simple rule for the evolution of homophily, a > Kb, is robust to model variations. See the

text for more details.

Models Condition for natural selection

to favor homophily over heterophily

Basic model I

(with unbiased matching)

〈p〉 > 1/2⇔ a > Kb

Extended model II

(with biased matching)

1 〈p〉 > 1/2⇔ a > (1 − φ)Kb

Extended model III

(with local mutation, µ→ 0)

2


p∗ < 1/2, a, b > 0;

p∗ > 1/2, a, b < 0.
⇔ a > K0b

Extended model IV

(with full strategy set)

3 〈p〉 > 〈q〉 ⇔ a > Kb

Extended model V

(with two sets of phenotypes)

4


〈p〉 > 1/2⇔ a > K′b

〈q〉 > 1/2⇔ c > K′′d

1 The parameter φ denotes the probability that individuals are assortatively matched to form bilateral social

connections.

2 K0 = limµ→0 K, and p∗ = bK0/(a + bK0).

3 〈p〉 and 〈q〉 denote, respectively, the average homophilic preference and the average heterophilic

preference in equilibrium. Here the values of (p, q) are constrained in the unit square, [0, 1]2. Note that

〈p〉 > 〈q〉 requires exactly the same condition as in the basic model where in effect p + q = 1 holds.

4 The evolution of homophily in each set of phenotypes requires the same condition as in the basic model.

Here, K′ (K′′) depends on the number of phenotypes in phenotypic set 1 (set 2).

to our homophily model: ni j = ppNiN j if i = j (note that intra-group links are counted twice);

otherwise ni j = (1 − p)(1 − p)NiN j if i , j. We can obtain the normalized mixing matrix e = {ei j}

given by our homophily model, where ei j = ni j/
∑

i j ni j is the fraction of links in the network that

connect group i with group j. Let Wi j denote the observed number of links of individuals in group

i that are with group j. Then the predicted number of links of individuals in group i that are with

group j, Ei j = ei j
∑

i
∑

j Wi j.

39



We use ordinary least squares to fit the model and estimate average homophilic preferences for

each available population and phenotype. Specifically, empirical estimates of homophilic prefer-

ences are given by minimizing the sum χ2(p) =
∑M

i=1
∑M

j=1(Wi j − Ei j)2:

p̂ = argmin
0≤p≤1

M∑
i=1

M∑
j=1

(Wi j − Ei j)2. (110)

The standard error of the estimate (the standard deviation of the residuals) is obtained by

σ̂e =

√∑
i, j(Wi j − Êi j)2

z − k − 1
, (111)

where z is the total number of observations and k is the number of estimated parameters, and Êi j

is evaluated at the estimated p̂.

We identified six data sets that contained network information with published distributions of

the age, sex, race, and/or caste of both individuals in each social tie. These data sets included three

for humans, the Framingham Heart Study [9, 10], the National Longitudinal Study of Adolescent

Health [11], and a study of 75 villages in rural Karnataka in Southern India [12, 13]. For all three

of these studies we observed the phenotypes age and sex. We treated age as a discrete phenotype,

truncating to the nearest decade for Framingham and India, and the nearest year for Add Health.

Additionally, we measured the phenotype race in Add Health (black, Asian American, Native

American, white, other) and caste in India (Scheduled Caste, Scheduled Tribe, OBC, General).

For animals, we measured homophily on sex for dolphins [14], Colobus monkeys [15], and

zebras [16].
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