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Yang et al

A BINOMIAL VARIATION MODEL
The conditional distribution of the major allele count Rij in the ith SNP and the jth pool is assumed to be binomial given the observed depth
Dij (the total counts of both alleles for one SNP) and allele frequency (proportion of response) pij , such as

Pr(Rij = xij |Dij , pij) =

(
Dij

xij

)
p
xij

ij (1− pij)Dij−xij (1)

for observed allele1 counts xij = 0, 1, . . . , Dij . It is further assumed that the expected pij within the same treatment group is the same.
Under these assumptions, for SNP i within the same treatment group,

E(pij) = θi (2)

Var(pij) = θi(1− θi) (3)

Therefore, we used p̄i the arithmetic mean of p̂ij (p̂ij = xij/Dij) to estimate θi. Noticeably, p̄i involves no weighting of the pij by depth,
which might not be appropriate when the variance of depth across pools is considerably large.

B PARAMETER ESTIMATING IN WILLIAMS’ EXTRA-BINOMIAL VARIATION MODEL
Under the assumptions of this model mentioned in the main text, to estimate allele frequency θi, we suppose

λi = ln

(
θi

1− θi

)
and λi fits the logistic linear model where

λi = β0x+ β1(1− x) x =

{
1, control
0, case

(4)

The parameters involved in this model were estimated in the following iterative procedure proposed by Williams in 1982 when he
programmed in GLIM (Williams, 1982) and now programmed in R in our paper.

C REGRESSION IN MODIFIED EXTRA-BINOMIAL MODEL
Equation 9 in the main document is derived in this way:

E(r2ij) = E

[
n

n− 1

1

θ̂i(1− θ̂i)

(
Rij

Dij
− θ̂i

)2
]

=
1

θ̂i(1− θ̂i)
E

[
n

n− 1

(
Rij

Dij
− θ̂i

)2
]

=
1

θi(1− θi)
Var(Rij/Dij)

=
1

θi(1− θi)
θi(1− θi)D′−1

ij

= D′−1
ij =

a

s
+

b

Dij

(5)

Linear regression of r2ij on 1/Dij for estimating the parameters a and b involved in the model was carried out using generalised linear model
(GLM) by first adopting Gaussian errors to estimate initial values of a and b, and then using these to fit a GLM with gamma errors and
identity link because both a and b are positive.

Since the estimated allele frequency θ̂i depends on a and b, the calculations were carried out iteratively until the difference to the previous
run converged to no more than 10−3.

The regression yields a = 0.40, b = 13.66 for all SNPs after initial filtering and a = 0.59, b = 1.27 for dbSNPs .
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Fig. 1. SNPs were grouped according to minor allele frequencies (MAF) and three methods: Fisher’s exact test, EB1 and EB2 were performed to each group.
In our data, there were 356 rare SNPs with MAF less than 0.01and 117 common SNPs with MAF greater than 0.01. Q-Q plots were drawn to compare the
performances of these three methods on rare and common variants.

Table 1. Sequencing error rates estimated from our experimental data (see mthod in the main text). εa,a′ denotes the error rate that a reference allelea is
miscalled as allele a′.

Error type Error rate (×10−5)

εA,T 2.71
εA,G 3.57
εA,C 2.36
εT,A 2.61
εT,G 2.11
εT,C 4.13
εG,T 3.70
εG,A 10.63
εG,C 1.37
εC,T 10.59
εC,G 1.16
εC,A 3.44
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