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1 Examples of Bayesian Influence Measures

We focus on assessing the influence of a perturbation scheme w to the posterior distribution
based on three objective functions, these being the ¢p—divergence, the posterior mean distance,
and the Bayes factor as follows.

Example 1 (Bayes factor). The logarithm of the Bayes factor for comparing w with w? is

BF(w,w’) = log(p(Do;w)) — log(p(Dy; w’))
= log([ p(D,,b;0,w)p(0;w)dbdl) — log( [ p(D,, b; 0, w")p(0; w’)dbae).
The value of BF(w,w?) can be regarded as a statistic for testing hypotheses of w against w’
(Kass and Raftery, 1995). Under some smoothness conditions, BF(w,w") is a continuous map
from M to R.
We set f(w) = BF(w,w”) and consider a smooth curve w(t) on M with w(0) = wy and

dyw(t)|i=o = h, where d; = d/dt. Thus, we have
d¢log p(Do; w(t))|e=0 = V f(w(0))"h,

where V f(w(0)) = E{d,logp(D,,b,0;w’)|D,,w’}, in which the conditional expectation is
taken with respect to p(b, 8; D,, w"). We can use MCMC methods to draw samples {(0(5), b))
s = 1,...,50} from p(b,0;D,) and then approximate V f(w(0)) by using 50_12511 J, log
p(D,, b 8 wY). For instance, for the perturbation to the prior given by p(0;t) = p(8) +

w{g(@) — p(0)}, it can be shown that

E{g(8)/p®)D.Y  {py(D.)/p(D,)}?
Flornlw0) = 1000 /p(0)) ~ vars{9(6)/p(0))

where varp is taken with respect to p(@), p(D,) = [ p(D,,b;0)p(0)dbdl, and p,(D,) =

[ p(D,,b;0)g(0)dbdb. Since the ratio of p,(D,) to p(D,) is the Bayes factor in favor of g()
against p(@), the first-order local influence measure is the square of the normalized Bayes factor

of g(0) against p(0).



Example 2 (¢p—divergence). The ¢—divergence between two posterior distributions for wg and

w is defined as

Brr(w. ) = [ (R(D.6:."))p(b.6: D, )il

where R(b, 0;w,w") = p(b,0; D,,w)/p(b,0; D,,w") and ¢(-) is a convex function with ¢(1) =
0, such as the Kullback-Leibler divergence or the y?-divergence (Kass et al., 1989).
We set f(w) = ®pr(w,w’) and consider a smooth curve w(t) on M such that w(0) = wy

and dyw(t)|i=o = h. It can be shown that 0, f(w(0)) = 0 and

H; =¢(1) /[aw log p(b, 6; D,,w")|**p(b, 0; D, w’)dbd®,

where a®? = aa” for any vector a and ¢(t) = d?¢(t)/dt>. We need to develop a computational

formula for computing H ;. Note that 9, log p(b, 8; D,, w") equals
O, logp(D,, b, 0; W°) — /[8w log p(D,, b, 8;w")|p(b, 8; D,,w")dbde.

In practice, we use MCMC methods to draw samples {(0(5),b(8)) s = 1,...,5} from

p(0,b; D,,w”) and then approximate H ; using

So SO
S(1)S; > [0 log p(b'), Dy, 8;w(0)) = S5 Y~ A, log p(b'), Dy, 87; w(0))] %%,
s=1 =
For perturbation schemes to the prior distribution, it can be shown that

Glw") = [10.105p(6:")|*p(0:")d0

and H; = ¢(1)var[d, log p(8; w°)|D,,w"], which are, respectively, the Fisher information ma-
trices of w(t) based on the prior and posterior distributions, where var(:|D,,w") denotes the

posterior variance. For instance, for p(6; w(0)) = p(0) + w{g(0) — p(0)}, we can show that

a1, _ Ovar{g(6)/p(6)| Do}
- varp{g(0)/p(0)}

where varp(-) denotes the prior variance.



Example 3 (Posterior mean distance). We measure the distance between the posterior means
of g(0) for wy and w (Kass et al., 1989; Gustafson, 1996). Specifically, we define the posterior

mean of ¢g(0) after introducing w as
M,(w) = /g(@)p(b, 0;D,,w)dbdo.
Cook’s posterior mean distance for characterizing the influence of w can be defined as follows:
CMy(w, w") = {M(w) — My(w®)} Wo{M,(w) — M,y(w)}, (1)

where W, is chosen to be a positive definite matrix. From here onwards, W, is chosen to be
the inverse of the posterior covariance matrix of g(6) based on p(8; D,, w").
We set f(w) = CMy(w,w”) and consider a smooth curve w(t) on M such that w(0) = wy

and dy;w(t)|t=o = h. It can be shown that 0, f(w(0)) =0 and Hy = MgWgMg, where
M, = Cov{h(8),d,,log p(D,, b, 8; w)|D,, w°}.

We can use MCMC methods to approximate Mg and Gj.

2 Simulation studies

2.1 Model Setup

In this simulation, we consider an example with two longitudinal markers and bivariate survival
times. The two longitudinal markers are monitored over time and are predictive of the bivariate

survival times. In this case, K = M = 2. Specifically, each longitudinal response was given by
Yir(tije) = Nik(tiji, bir) + €ijke = Bro + Bratije + Brari + biro + bikalije + €ijk (2)

fori=1,...,100, k =1,2 and j = 1,...,n;, where the r;’s represent a baseline covariate in the

longitudinal model. Moreover, it is assumed that ¢;;1 = t;;o for all ¢ and j, €;; = (&1, 5ij2)T are
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independently and identically distributed as Ny(0,X), and the random effects b; = (b, bL)"
are distributed as N4(0, ®), where b;, = (biko, bir1)” for k = 1,2. Here 3 and @ are covariance
matrices. Conditional on b;, the two events and censoring times are assumed to be independent

and their marginal hazard functions are given by

A (813, 25) = Ao (t) exp{amimin (t, b)) + Qmania(t, biz) + 2] v, } (3)

for m = 1 and 2, where z; = (251, 2i2)" is a vector of time-independent covariates. Let Y;(t) =
(yi1 (1), iz (0))T and m,(t, b;) = (n;1(¢, bi1), mia(t, bin))T. In this case, the density of (Y, Ty, d;, b;)
given 0 for the i-th subject is given by

2

Tim
p(Y;, T;,0;,b;;0) =C H /\m(ﬂm|biyzz’>6im exp{—/ Am(u|by, z;)du} x
0

m=1
n;

11 (|2|_l/2 eXp[_%{Yi(tij) —1;(ti; b)Y ZTHY (b)) — my(ty, bz‘)H) x (4)

j=1

1
(|<1>|-1/2 exp(—gb?@-lbg) |

where C'is a constant independent of 6.

To carry out a Bayesian analysis, we take a joint prior distribution for @ as follows:

Oy = (Oémb amZ)T ~ N(agna Hg>7 TYm ™ N(7?n7 H?y)> 2_1 ~ WiShartZ(R07 P0)>
/Bk = (ﬁk’O) 5]@17 /6k2>T ~ N(B% H%)v ¢_1 ~ WiShart4(R37 p%) (5)

0

for k,m = 1 and 2, where a2, H,

,v%, H), R°, p°, R}, and py, are pre-specified hyper-
parameters. For the baseline hazard A, (-), we take a piecewise constant hazards model with
250 subintervals with equal lengths such that Ao (t) = 37, hal(t € (ci-1,¢1]), where the ¢'s
are prespecified constants. Furthermore, we take h,,; ~ I'(7o;, 7;) for I = 1,..., L = 250 and

m = 1 and 2. Finally, we can use MCMC methods (Ibrahim et al., 2001) to conduct Bayesian

influence analysis on @ and b.



2.2 MCMC Algorithm

We need to introduce some notation. Let t;; = (ti1,ti2)", Yi(ti;) = (vir(tij1), viz(ti;2))", and
n;(ti;, b;) = (01 (tij1, bin), mia(tije, biz))". We define

= {Yi(ty):i=1,...,100,j =1,...,n;}, T={Tp:i=1,...,100,m = 1,2},
A = {opm:i=1,...,1000m=1,2}, b={b;: i =1,...,100},
t = {tye:i=1,...,100,j=1,....n;k=12}
r = {r,...,r00}, Z={z;:1=1,...,100},
h = {hp:m=121=1,... L},

0 = {(ﬁ? E7cx1a 027’)’1,")’2,,61,ﬂ2, h’}

Then, the joint probability density function of (Y, T, A, b, ) given (r, Z, t) is proportional to

Netpg—3 100459 =5 100 n; T
BTE T T e __ZZ il i(tig, 01)" X7 (Y (L) — mi(tiy, bi))
=1 j=1
100
-+ Z Z Z {(Szm Oémlnll mzl? bzl) + Ckm27712(tmll, blg) + zZ; ’)’m) — hmleil}
m=1 [=1 i=1
100 2
S s log(h) & ZbT &b 3> (e — o) (HY) Mo~ ) (6)
m=1 [=1 m:l
1 2 2 L
—§tf(271R81) —3 > = V) H) ™ A =A%) = D) Tuihum
m=1 m=1 |=1
1< 2
DB A (B ) - tr<¢>—1<Rz>—1>] I1 Hh::zl‘l) ,
k=1 m=1 [=1

where N = """ n;, d, is the number of failures in the Ith time interval I,; = (-1, Cmy], and
tr . denotes the nearest past time point where responses are taken. Moreover, B,,; is defined
as follows:

(i) if Ty < cmg—1, Bmir = 0;

(ii) if Ty > cmy, letting (B, Sma) = max{(h,s) : A%, < cmi—1} and (o, Smiz) =
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max{(h,s) : A}, < cm,}, where A% . is the rescaled t;;5 so that A}, . has the same unit as T},

then if Ayt = hpiz and spi1 = Sz,
T .
Bt = (et — Cmi—1) eXp{am1Mi1 (ti iy somin» 0i1) + @mania(ti piy smin» Biz) + 25 Y}

if it = iz and Sy < Spio,

Bt = (Afpnsmnt1 — Cmi=1) €Xp{am1i1 (b hpin s +10 0i1) + Q2 iz (b hyir sy +15 Bi2)
Smi2
+z?7m} + . Z I(Az,hmﬂ,l-‘rl - A;k,hmil,l) eXp{O‘mlnil(tLhmu,l? bll)
=Smi1+

a2 (i hyinds Di2) + 21 Y} + (Gt — Al o) €XDL i1 (i iy 5z » Dit)
+m2i2 (ti,hmﬂ,smz‘zv bi?) + zzT'Ym};

if Smil = Smi2 and hmil < hmi27

Boit= (Afh, 16 — Cmi—1) €XPLm1Mi1 (Fi hiy 11,505 0i1) + Cmanli2 (B hpin +1,5m00 5 Oi2)
hmi2
2l v+ > (A — Alie) exp{minin (tig s, bin)
I=hmi1+1

+Qm2i2 (ti,l,smz‘u bl?) + z?7m} + (CmJ - A;:hmi278mi1) eXp{amlnﬂ(ti,hmiz,Smiu bll)
a2 (ti hpin,smins 0i2) + 28 Y b

if Appit < iz and Sy < Spmio,

_ *
B = (Ai,hmi1+1,smi1+1 — Cm—1) €XPLAm1 it (i i +1,5mi1+15 Din) + Q22 (b hyis +1,5mi1+15 Di2)

hamiz2 Smi2

AR A D > (Al — Al exp{amini (L, bin)
K=hmi1+11l=smi1+1

+amaiz(tint, bi2) + 27 Yo} + (Cmg — ALy o) exD{m1i1 (L hpis spmia Bit)
Fm2nio(tihmiz,smins 0i2) + 28 Y }i
(ili) if emy—1 < Tim < g, USING Aty Pmis Smar and Spe given in (i), then if (A, Smi)
= (hmig, Smig) or T}, < A;hmil‘FLSmil when hmﬂ < hmig and Smil = Smia O L < A;:hmi175mi1+1

*
when hpit = hipig and i1 < Spig or Tiy < A7,y o When hyin < hypig and Spmin < Sz,

Binit = (Tim — Cmi—1) €xp{am1mi1 (tihyir simins 0i1) + @maiz(Eihyir s s Diz) + zlv.}
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and otherwise, we define

Bmil - <Ai,hmil+1,smi1+1 - Cm,l—l) eXp{amlnil (tivh7rli1+178mi1+17 bll) —I— O[m27722 (tlvhmi1+173mil+17 b12)
Lil Li2

+2{ Y}t + hZ y > I(Af,n+1,l+1_A;‘knz)eXp{@mlWil(tmlabil)
K=hmi1+1l=smi1+

+atmania(tint; bi2) + 2] Y} + (Tim — AG ) explaminin (B v i)
+am2ni2 (ti,Lil,LQ? bl?) + ZZT’Ym}’

where h,i +1 < 11 < Ao and Sy < Lin < Spie are chosen so that A¥ < T, <

TyLi1,Li2
A*
ttir 1o +1-

When (A1, Smin) does not exist, we define h,,;; = Si1 = 1, and the calculation of B,,;
needs a minor adjustment.

The Gibbs sampler is used to sample a sequence of random observations from the above joint
posterior distribution given in (6). Specifically, {®, 3, a1, a2, vy, Y2, 81, B, b, b} are iteratively

drawn from the following full conditional distributions:

p(®7|b),

p(E7Y,t.b),

P(Cn, Y| A0, Y T 7, Z t, 8y, 85, h),
p(BLlALY T, r, Z t, oy, 2,7y, Y, h),
p(b|AY ,T,r, Z t, a1, a2,v1,79, By, By b, ®,3),

p(h‘A,b,T,’I‘, th7a17a27’717727/617ﬂ2)'

The above mentioned full conditional distributions are briefly discussed as follows. Let a®? =



aa’ for any vector or matrix a. It is easily shown from (6) and (5) that

p(®71|b) ~ Wisharty(pS + 100, (R}) ™" + Z b;b!),

100 100 n;
p(X71Y,t,b) ~ Wisharty(p +an, (R~ +ZZ (ti) — m; (i, 0)]%H) 1),
=1 =1 j=1
100
p(hu|b, 8, T, 7, Z, 00, 00,71, Y2, By, Ba) ~ D701 + dyt, Tu + ZBmil)~
i=1

It follows from (6) and (5) that p(am,v,,|A,b, Y, T, r . Z t, 3,, 3,5, k) is proportional to

L 100
eXp [Z Z {5z'm (Oémlml(t:mza bi1) + maniz(tis biz) + ZZ'T’Ym) - hmleil} (7)

—%(am —a)) (HY) o — ) — %(vm — o) T(HY) (v, — v?n)} :

Moreover, p(By|A, b, Y, T, r, Z t, a1, as,7,, 75, ) is proportional to

100 n,

exXp [__ Z Z i( 137 b; ))Tz_l(Yi(tij) - ni(tij’ bi))+
=1 1

2 L 100 ” 1

3 S Gt bis) — i Brt) — (8, — B () (8, — 2)] )

=1

m=1 =1
and p(bz|A7 Y7 TJ r, Z7 ta aq, &2, Y1, Y9 /817 /827 h’) is proportional to
1«
exXp [_5 Z(Yl(t) = n;(tij, bi )TETHY (s 7) = mi(tij, bi)) (9)

1

Jj=
: - * 1 Tx—1
+ Z Z {5zm amlnzl mzla bll) + 2T (tmib sz)) - hmleil} - §bz P bz

m=1 =1
100 L
Let Q' = diag((H?)™?, (Hg)*l) + ;l_zlhmll’)’mil, where B,,; = 8QBmil/8um8uZL|um:0

with u,, = (al ,vT)T. The Metropolis-Hasting (MH) algorithm is implemented to draw ran-

dom samples from the conditional distribution (7) as follows. At the (d + 1)st iteration with a

u%), a new candidate u,, is generated from N (um ,02€),) and is accepted with probability

Hll’l{l (am77m|A b Y T r, Z t /617/827 ) }
1 ’
p(am 7’77” ‘A b Y T r, Z t ﬁlaﬁ% )
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in which o2 is selected such that the average acceptance rate is about 25% or more.
Similarly, the MH algorithm for sampling 3, from p(3,|A,b,Y . T v, Z t, o1, a2, 7v, 7o, h)
given in (8) is implemented as follows. At the (d + 1)th iteration with a ﬁ,id), a new candidate

B, is simulated from the proposal distribution N (,B;d), agﬁg), where

100 n; 2 L 100
p= Z Z oM Qi + Z Z PuniConit + (H ) ™!
=1 j=1 m=1 =1 i=1

with qZ.Tjk = (1, tik, ;) and Cpip = 82Bmil/8,3kaﬁf]ﬁk:0, in which o** is the (k, k)th component

of 37!, The acceptance probability is

min? 1 p(ﬁk|A7b7Y7T7TaZatyalaa27717727h) )
p(/Bl(gd)|A7 b7Y7T7r7 Zutyalu A2, 71,72, h)

Sampling b; from p(b;|AY T, r, Z t, a1, s, 71, 7Yy, 61, B, h) as given in (9) can be im-
plemented as follows. At the (d+ 1)st iteration with a current value bgd) , a new candidate b; is

(d)

simulated from the proposal distribution N(b;"”,c2€2,) and is accepted with probability

min?d 1 p(bi|A7Y7T7T7Zat7a1aa277177271817132ah)
p(bz(d)lAvaT?ra Z7t7a17 a27’717727/6171627 h)

where @, = @' + 30 ATST A+ 300 ST hi0? Bt/ 0bi0b] |, _ with

1 t;; 0 0
Aij: ]1
0 0 1 ti

2.3 Influence analysis

In the first simulation study, we considered the JMLS specified in (2)-(4) with the following
additional specifications. In model (2), the longitudinal measurements were observed at time
points ¢;;1 = t;;2 = 0.0,0.5,1.0,1.5,2.0 and r; was generated from N(0,0.8) for i = 1,...,100

and other true parameter values were given by (519, 511, 812) = (0.4,0.3,0.5), (P20, a1, P22) =



(0.2,0.4,0.3), and

04 0.1 04 0.2 0.3 0.1
Y= P, = P, =

0.1 04 02 04 0.1 0.3

In model (3), the two components of z; = (z;1, zi2)T were, respectively, generated from z;; ~
N(0.0,0.15) and z;2 ~ N(0.52;1,0.20). Moreover, the survival times T3; and Tb; were indepen-

dently generated from \,,(¢|b;, z;) with the following specifications:
)\10(15) = 085, )\20@) = 070, 11 = — Q921 = 03, 12 = — Q99 = 04, and Y1 = VYo = (025, 035>T

The censoring times C),; for m = 1 and 2 were independently generated via C,,; = 1.2 when
1.2 > 4.5u,,; and 4.5u,,; otherwise, where u,,; was independently generated from a uniform
distribution U (0, 1).

To carry out the Bayesian analysis, we specify the prior distribution of € according to (5).
The hyperparameters of p(@) were set as o = (0.3,0.4)7, aJ = (-0.3,-04)7, H° = I,,
vo, = (0.25,0.35)” for m = 1 and 2, H) = I,, B8] = (0.4,0.3,0.5)", 85 = (0.2,0.4,0.3)7,
H% =13, p° = p) = pY =10, R’ = 5%, ng = 5P, for k = 1 and 2, and 79, = 10.0 and
T =80forl=1,...,250.

We simultaneously perturbed the mean of the longitudinal measures Y;(t), the distribution
of b;, the prior distributions of a, and -, and the marginal hazard function \,,(¢|b;, z;) as

follows:

Y i(tij) = m;(tij, bi) + wyila + €35, p(bi; Oy, wy ;) ~ N4(07w1,_,il¢),

A (1B, 24, wx) = Amo(t) exp{aum1min (t, bi1) + Qmania(t, bi2) + Wam2; Yo s

(| wWar, Waz) ~ N(@2, + wasly, H fwar),

P(Vmlwsr, w2) ~ N(¥), + wyola, HY Jwon). (10)
Then, we calculated G(w"), and then chose the perturbation scheme @ = w’+G(w®)/?(w—w?).

10



Subsequently, we used the logarithm of the Bayes factor to calculate the associated local influ-
ence measures vy = argmax{FI;[v](®(0))} using the aforementioned MCMC methods. To
introduce some outliers, we changed the longitudinal measurements of the last two individu-
als, Y;(tij1), to Y;(t;1) +2.015 for j = 1,...,n; and ¢ = 99,100. Posterior estimates of the
parameters under the perturbations are obtained by the Gibbs sampler, and a total of 5000
iterations after 5000 burn-in are used to compute the local influence measures with respect to
a given perturbation scheme. Cases 99 and 100 were detected to be influential by our local
influence measures (Fig. 1(a)). Furthermore, we used the same setup except that we employed
a perturbed prior distribution for =,,, namely p(+,,) = N(12,0.081), and then we applied the
same MCMC methods, perturbation scheme, and local influence measures. Cases 99 and 100
and the perturbed prior distribution of =, were identified to be influential (Fig. 1(b)). Figures
1(c) and 1(d) show that the metric tensor g;;(w®) for perturbation (10) has little change for all
the individuals, and there is a large change for the metric tensor g;;(w®) corresponding to the
perturbation in the hazard function.

In the second simulation study, we used almost the same setup except that we employed
a single-case perturbation to the variances of the errors in model (2). In this case, g,; = n;

for i =1,...,n in the metric tensor G(w”). We considered the local influence measures based

on both the logarithm of the Bayes factor and the Kullback-Leibler divergence. As expected,

B

iy and

cases 99 and 100 were detected to be influential by our local influence measures v
SID¢,ej with the two priors of ~,,, namely p(v,,) = N(’y%,H?Y) (Figs. 2(a) and 2(c)) and
P(Vm) = N(12,0.0815) (Figs. 2(b) and 2(d)). Also, the perturbed prior distribution of ~,, was
identified to have a big effect (Figs. 2(b) and 2(d)). Figures 2(e) and 2(f) show that the metric
tensor g;;(w?) for the variance perturbation has little change for all the individuals, and there

is a large change for the metric tensor g;(w®) corresponding to the perturbation in the hazard

function.
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In the third simulation study, we examined whether our local influence measures can detect
the misspecified relationship between the survival time and the covariates of interest. We
generated the data using the same setting as specified in the above simulation studies, but the

hazard functions were taken as
A (8|05, 21) = Ao €xXp{mini (t, bit) + Qmanin(t, bio) + 21, + atzi} (11)

for m = 1 and 2 with the values of parameters (A0, ®m1, @m2,7,,) being pre-specified for a

given value of a. However, we fitted the model specified in (2) and

Am (t]bi, 2i) = Amo(t) exp{amini (t, bi1) + manin(t, biz) + Z;TF’Ym}

using the same priors as given in the first simulation study. The fitted model would be mis-

specified if a # 0. We considered a global perturbation as follows:
A (t]bs, 25, w) = Ao exp{am1min (t, bir) + cmamia(t, bio) + 2] 7, + witzin}, (12)

which was used to check whether the local influence measures can detect the missing interaction
term between time and z;,. In this case, w = 0 represents no perturbation. The local influence
measure of the logarithm of the Bayes factor was calculated and denoted as tg. Then, 1000
bootstrap datasets were generated from the fitted model to calculate the local influence measures
of the logarithm of the Bayes factor, denoted as t% (k = 1,...,1000), which led to the associated
p-values. The p-values were calculated to be 3%, 2% and 1% when a was taken to be 0.28,0.30
and 0.35, respectively. These results indicate that the survival model is misspecified at the 5%
significance level for these values of a. Therefore, the local influence method was useful for
detecting the model misspecification in this example.

In the forth simulation study, we examined whether our local influence measure can assess

the misspecified relationship between the longitudinal measurements and the survival times.

12



We generated the data according to almost the same setting except that the hazard functions

were taken as
)\m(t‘bl, Zi) = >\m0 exp{amlml (t, bzl) + CL?]Z'Q(t, blz) + ZZT")’m} fOI" m = 1, 2. (13)

However, we fitted the model specified in (2)-(4), in which A, (t|b;, z;) = Amo exp{amini (£, b))+
zT~, } under the same prior distribution as given in the first simulation study. The fitted model

would be misspecified if a # 0. We considered the following global perturbation

A (t]bi, 2;) = Ao exp{aminin (t, bir) + wnia(t, bio) + ZiT’Ym}

to check model misspecification. In this case, w = 0 represents no perturbation. Again, by
using the wild bootstrap method, the corresponding p-values were given by 4% and 5% when a
was taken to be 0.36 and 0.32, respectively. These results indicate that the longitudinal model
is misspecified at the 5% significance level for b = 0.36 and 0.32.

In the fifth simulation study, we examined whether our local influence measure can assess
the multiple misspecifications of the longitudinal model and the survival model, as well as

detect outliers. We generated the data using almost the same setting as specified in the first

1.000 0.485
simulation study except for ¥ = , but the longitudinal measurement model

0.485 0.640
was taken as

Yik(tije) = Nik(tiji) + €ije = Bro + Bratije + Brari + ijie,

and the hazard functions were taken as
A (t12:) = Amo exp{amini (t) + 27 7,,} for m =1,2.

However, we fitted the generated data with the model specified in (2)-(4) under the same prior
distribution as given in the first simulation study. The above specified longitudinal measure-

ment model violates the model assumptions in the following two ways: (i) we don’t include
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random effects to induce correlation between the repeated observations, (ii) the variability of
the marginal error terms decreases as time increases. The above specified hazard function vi-
olates the assumption of the survival model in the following two ways: (i) we postulate that
the time-to-event does not depend on the underlying random effects; (ii) we postulate that the
time-to-event is not associated with 7;2(¢). To introduce some outliers, we changed the longi-
tudinal measurements of the last two individuals, Y';(¢;;1), to Y;(¢;;1) +2.015 for j =1,...,n,

and 7 = 99,100. We consider a simultaneous perturbation as follows:
p(yi(tij)‘wi> ~ N(ni<tij)7 E/wi)a p(7m|w’y) ~ N(79m Hg/wv)v

Yir(tije) = Nik(tiji, bi) + €ijk = Bro + Biatiji + Brari + wp(biko + bikatijn) + €ijk,
Ao (8B4, 23, wx) = Ao exp{ 1 in (£, bin) + Wamania(t, bi2) + 27 ¥},
where ti; = (tij1, tij2)", ¥i(ti;) = (Wi (tijn), Ya(tije))" and m;(ti;) = (i (tijn), m2(tije))” - In this
case, w; = 1, wy, = 1, wp, = 0 and wy = 0 represent no perturbation. We considered the local
influence measures based on both the logarithm of the Bayes factor and the Kullback-Leibler
divergence. As expected, cases 99 and 100 were detected to be influential by our local influence
measures v2  and SID¢7ej with the two priors of «,,, namely p(vy,,) = N(’ygl,Hg) (Figs.
3(a) and 3(c)) and p(7,,) = N(12,0.081,) (Figs. 3(b) and 3(d)). Also, the perturbed prior
distribution of +,, was identified to have a big effect (Figs. 3(b) and 3(d)); the longitudinal
measurement model and the hazard function were detected to be misspecified. Figures 3(e)
and 3(f) show that the metric tensor g;(w®) for the perturbation to the variance of the errors
has little change for all the individuals, and there is a large change for the metric tensor g;;(w®)

corresponding to the perturbation to the longitudinal measurement model and the hazard

function.
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3 Application to the IBCSG data

3.1 MCMC Algorithm
We need to introduce some notation. Let t;; = (ti1, ..., tija)7, Yi(ti;) = (vir(tij1), - - -, yia(ija))7,
and ’I’]Z(t”,b) = (nil(tij17bi1)a e ;ni4(tij4ubi4))T7 Where bz = {bzk . k’ = 1, Ce ,4} and bzk: =

(biko, big1)™ and nix(t, bix) = Bro + BriTin + - - . + BreTic + Brrt + biro + bixat. We define

= {Yi(ty)i=1,...,832j = 1,23}, T = {Tjm i =1,...,832;m = 1,2},
A = {m:ii=1,....82m=120b=1{b:i=1,... 832,
t = {tijp:i=1,...,832,7=1,23k=1,....4}, X ={x; = (va,...,x6) 1 1 = 1,...,832},
Z = {z;:i=1,...,82} ,h={hy -m=1,201=1,...,L},
om = (i, .., am)’ form=1,2;
Br = (Bro,Briy...,Bu)" fork=1,...,4,

0 = {(I.la ey <I)4, 2,(11,a2,’)’1,’)/2,,61, s aﬂébh}‘

Then, the joint probability density function of (Y, T, A, b, 6) given (X, Z,t) is proportional
to

n 3

4 0

_ N+pg—3 e 3 1 _

S (1@ e —52 (Yi(tyy) — miltiy, 0:) S (Yi(tyy) — mi(tiy, bi))
k=1

i=1 j=1

2 L n

> D> A (i (G bia) + -+ s (£, bia) + 20 ¥0) — Pt Bt}

m=1 [=1 i=1

2 L 2
5 dilog () — Z Z b b — 5 D (e — @) T(HY) (e —al) (1)
;n 117]=1 1 ) =1 k=1 m:l ) .
—§tr(271R81) —3 > =V HY ™ A =0 = DD it
1 \ m=1 1 , m=1 [=1 ) 5
=5 2 (B = BT (HL) (B, — BY) — 5 Ztr@,;l(Rzk)—l)] (H Hh;%‘1> ,
k=1 k=1 m=1 [=1



where N = 1664, n = 832, d,, is the number of failures in the [th time interval I,,, =

(Cmji—1,Cmy], and t* ., denotes the nearest past time point where responses are taken. Moreover,
B, is defined as follows:

(i) if T < Cmg—1, Bma = 0;

(ii) if Ty > cmy, letting (Amir, Smin) = max{(h,s) : A%, < cmi—1} and (hmia, Smiz) =
max{(h,s) : A}, < ¢m,}, where A%, is the rescaled ¢;;5 so that A}, . has the same unit as T},

then if hypii = iz and Sy = Sz,
Bt = (Cmi — cmi—1) exp{am1nit (tihy s> 0i1) + - oo+ @maia iy simin s Oia) + Z;‘F’)’mh

if Appit = iz and Sy < Spi2,

Bit= (Afh s ie1 = Cmi—1) €XPLm1it (B hi i +15 0i1) + Qa2 (Bi ki s +15 Bi2)
Smi2
+z7,,117m} + Z ( ;hmz‘l,l-ﬁ—l - A;k,hmil,l) eXp{amlnil(ti,hmihl? bZl) + et
l=smi1+1

+malia (ti,hmn,lv bi4) + ZZT'Ym} + (Cm,l - A;‘k,hm“,smm) eXp{amlnil (ti,hmil,smiz’ bil)
+ o Qnaia (ti,hmihsmm? b14) + le’)/m};

if Smil = Smi2 and hmil < hmi27

Boi = (A, 16 — Cmid—1) €XPLm1 i1 (Fi by +1,50m005 Oit) + - -+ Qnaia (Ei pyiy +1,5,000» Dia)
hmiz
+2] Y} +z hE (A 1o — Airsnn) eXP{aminin(tig s, bin) + .
=hmi1+1

Fmania(tigspins bia) + 2] Yo} + (Cmg — Afp o) exXp{m1 it (Fihyin,somin > Din)
+ o QpaMia (ti,hmmsmiw bl4) + z?’ym};

if it < iz and Sy < Smio,

S *
B = (Afn ot tsmins1 — Cmi-1) €XP{m1nin (Cihpmi+1,5mi+1, 0i1) + -+ n2niz (b b 41,501 +15 biz)

hmiz Smi2

+2/ Y} + hE . > I(Az,n-i—l,l—l-l — A%) expi{ o Mit (tint, bi1) + ...
K=hmi1+1l=smi1+

+maia(tint, bia) + 2] Yo} + (Cmg — ALy o) eXD{m17i1 (Fi by synin Bit)

+ A Qs (Fi hyig s> Dia) + 20 Yo 3
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(111) if Cm,l—1 < ,_sz S Cm,l, USil'lg hmﬂ, hmz‘g, Smil and Smi2 giVGIl in (11), then if (hmﬂ, Smil)

= (hmi2, Smiz) or Tim < A7y, when At < hyig and sy, = Smig or Tiy < A7y

mil+1,8mi1 milsSmi1+1

— *
when hmil = hmig and Smil < Smi2 O Em < Ai7hmi1+1157ni1+1 when hmil < hmiQ and Smil < Smi2,

Bt = (Tim — Cmi—1) exp{miNin(tiny sy s Oin) + - o+ Qnaia(Finyiy s 0ia) + 21 Y b
and otherwise, we define

_ *
B = (Ai,hmi1+1,smi1+1 — Cm,—1) eXPLam1Nit (Lo i 41,5 +15 Din) + -+« Qnaia (bi iy 41,5001 +15 bia)
Li2

Lil
+Z2T’ym} + hE ¥ Z 1(A2<,/<+1,l+1 - A:}il) eXp{QM177i1 (ti:“d’ bll) Tt
K=hmi1+11l=smi1+

+04m47h‘4(tml, bz4) + zzT’Ym} + (ﬂm - A:,Lil,Lig) eXp{amlnil (ti,Lﬂ,LiQ? bll) +...
+0maNia (tivir > bia) + 25V}

where i +1 < 11 < Ao and S < Lin < Spee are chosen so that A? < T, <

7,041,442
*
Ai,bi1+1,bi2+1'
When (A1, Smin) does not exist, we define h,,;; = Si1 = 1, and the calculation of B,,;

needs a minor adjustment.

To carry out the Bayesian analysis, we specified the following prior distributions:

o = (U1, - oy Q)T ~ Nl HY), ~,, ~N*°, Hf)y), >~ ~ Wishart, (R, p°),

Br = (Bros -, Brr)" ~ N(By, HY), hpy ~ (701, 711), ®;" ~ Wisharty(RY,, p3)  (15)

form=1and 2, and k=1,...,4, where h = {hpy :m=1,21=1,..., L}, al, H.,~’,, HY,
R°, 0°, 62, H %, Tol, Tl RS),C, and ng are pre-specified hyper-parameters. Moreover, a2 ~° |
62, R, and ng were set as their Bayesian posterior estimates that were obtained from the
MCMC algorithm under the noninformative prior distributions of a,,~,,, 2, B}, and <I>,;1.
The Gibbs sampler is used to sample a sequence of random observations from the above

joint posterior distribution given in Equation (14). Specifically, we iteratively simulate from
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the following full conditional distributions:

p(®;'[b).

p(E7YY,t.b),

(O, Y| ALY T X Z t,3,,...,8,,h),

p(BL|ALY T, X, Z, t, a1, 2,7,,75, h),

p(b|AY T, X, Z t, a1, 2,7,,Y2,B1, -, By, b, Py, ..., Py, ),

p<h‘A7b7T7X7 Z7t7 a17a277177271617 s 7/64)'

The above mentioned full conditional distributions are briefly discussed as follows.

First, it is easily shown from (14) and (15) that

p(®,"'|b) ~ Wisharty(p)y, +n, (Rg,) ™" + Z bibl) for k=1,...,4,
=1

p(S7YY,,b) ~ Wisharty(p” + 20, {(R*) ™ + ) Y [Vitiy) — miltiy, )]} ),

i=1 j=1

p(hml|b7t7T7X7 Z»a17a2771)727/817 s 7ﬁ4) ~ F(TOZ + dmlel + ZBmll)

i=1
It is easily shown from (14) and (15) that p(am,,v,,|A,b, Y, T, X, Z t,3,,..., B4, h) is
proportional to

L n
€Xp [Z Z {5zm (Oémlnil (t:(nil’ bzl) + ...+ am4m4(tfnil, bz4) + Z;r")/m) — hmleil}

=1 i=1

—%(am —a)) (HY) oy — a),) — %(vm — o) (HY) (7, — %‘L)} : (16)

Also, p(B,|A,bY T, X, Z t, a1, 2,74, 74, h) is proportional to

1 n 3 2 L n
exp [—5 DY (Vi) = milti, ) E 7 (Y ilt) = M, 00) + DY Y (Simtm
i=1 j—=1 m=1 =1 i=1
it bw) o Brt) ~ 5168, ~ B ()8~ B9)|. (1
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Again? p(bzk|A7 Y7 T7 X7 Z7 t7 a1, 2,71, Y9, /317 .. 7ﬂ47 h’7 @ka Z) is proportional to

2

exp | 5 (Vi) = 0,835, 0))7 2 (Vilt) — 8, 50) (18)

=1
: - * 1 T x—1
+ Z Z {0imuminir (i bik) — M Bt} — §bik<1>k bir
m=1 [=1

To simulate observations from the full conditional distribution relating to (16), we define

n L
Q" = diag(HY) ™", (H) ™) + Y > hoiBoua,
i=1 =1
where B, = 0* B/ aumau$n|um:0 with u,, = (al ,~4T)T. The MH algorithm is implemented

as follows. At the (d + 1)st iteration with a u'? a new candidate u,, is generated from a

N(ul?, 620,) distribution and is accepted with probability

mm{l P(C n|A Y. T, X, 2,8, 8, B, h) }
p(am,'ym ’A b Y T X Z t /817/827 )

o2 is selected such that the average acceptance rate is about 25% or more.

Similarly, the MH algorithm for sampling 3, from p(B3,|A,b, Y, T, r, Z t, a1, 2,71, ¥s, h)
given in (17) is implemented as follows. Let o** be the (k,k)th component of 3'. At the
(d + 1)st iteration with a ,Bl(cd), a new candidate 3, is simulated from the proposal distribution
N(BY",030), where Q' = 2371 o*rq,qT + 300 S0 S b + (HE) ™ with gf =

(1,2F) and Cpit = 9* Byt /08,081 | 3,-0- The acceptance probability is

min{ 1 p(ﬁk‘Aabal/?TaXaZ7t7a17a27717727h> )
( I(cd)|A> b7Y7TaXa th7a17a2a’717727h)

Samphng blk from p(bzk’Aa Y7 T7 X> Z7 ta oy, 02,1, Yo, /617 cee 7/845 ha ¢k> E) as given n
Equation (18) can be implemented as follows. At the (d + 1)st iteration with a current value

(d)

bl(.,'j), a new candidate by, is simulated from the proposal distribution N (b;, ,02y;) and is

accepted with probability

min 4 1 p(b’bk|Aa Y7T7X7 Z7ta a17a2771a727/817 s 71847 h’u @ka Z)
p(bgz)‘A7Y7T7X7 Z7t7a17a27’717’727/617 e 7ﬁ47 h7 (I)ka 2)
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where Qb = ‘I),;l + 23:1 O'kkAmkAZ;k + Z?n:l Zlel hmlaQBle/abzkabZMbm:O with Az’jk =

(1, t5)T.

3.2 Influence analysis

The first perturbation is a single-case perturbation obtained by perturbing each subject’s lon-

gitudinal profile as follows:

Yir(tiji, Wiji) = Bro + Brita + - .. + BreTic + Lrrtije + biko + bikitije + €iji/Wijk- (19)

: T T T T \T : _ T S
In this case, w = (Wi1,..., Wiy, Whiy--o Wy, ), in which wi; = (w1, ... wij)’ for i =
1,...,n=2832and j = 1,2,3, and w” = 1 presents no perturbation, where 1 is a vector with

all ones. Let W; = diag(wij1, . .., wjja) for all 4, j. The perturbed log-posterior likelihood I(w)
is given by
nong 4
w) =Y > D log(wi) - %[Yi(tij) —n,(ty;, b)) Wy BT W [Yi(ty) — n,(ty, b))} + C,
i=1 j=1 k=1
where C'is a constant that does not depend on w. It can be shown that G(w°) = diag(A, ..., A),
where
E(c%oy) E(0'?015) E(0'3013) E(o'oyy)
A=1,+ : : : : )
E(c"oy) E(c%04) E(0%043) E(oYoy)
in which o*" and oy are the (k,l)th component of matrix >! and X, respectively, and the
expectation is taken with respect to the prior distribution of .
The second perturbation is also a single-case perturbation obtained by perturbing the

marginal hazard function as follows:

A (], i, Wini) = Ao (t) exp{amiin (t,0:) + . .. + Qania(t, b;) + 27 v, + Wi}y
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where n;(t,b;) = Bro + Brazin + - - - + BreTic + Brrt + biko + bigat for k= 1,... 4. In this case,
w = (w11, wa1, - - -, Wi, wng)T and w® = 0 represents no perturbation. Then the corresponding

perturbed log-posterior is given by

n L M
l(w) = Z Z Z{émi[amlnil(t;—nla bi) - A Qmaia (it bi) 2] Yy Wi = ot Binia (wimi) } 4 C,

i=1 [=1 m=1

where B,,i(win) can be obtained by using z7+,, + wy; to replace 274, in B,,;. Similarly, we
can show that
G (w’) = diag(g11, 921 - - - » Gn1, In2),
where ¢,,; = Zle E(hpBpmy) form =1,2andi =1,...,n, and E(-) represents the expectation
taken with respect to the distribution of b;, and the priors for 3, and (h,., ¥,,, @m), in which
B = (Bro, Bty - - - Brs)” and @ = (1 - -+ 5 Qna) T
The third perturbation is to simultaneously perturb the shared random effects b; in both

the longitudinal profile and the marginal hazard functions:

Yie(Lije, wik) = Bro + Bzt + - .. + Breic + win(biko + biwitije) + €iji

>

Nik(tiji, ik, Wik) + Eij,
)\m<t’bi7 Zi, wi) = )\mO(t) eXp{Oémlml (t, bﬂ,wil) +...+ Oém47h‘4(t, bi4vwi4) + Z?')’m}a
where w; = (wi1, . ..,w;4). In this case, w = (w1, ...,w,), and w’ = 1 presents no perturbation.

Then the perturbed log-posterior is

3
3

i

(]

(Yi(ti;) — m(tij, by, wi)) TS (Y () — my(tij, by, w;))

1
2

>

=1

15=1

{6mi(umnin (8, bir, win) + - oo+ Qnania (5 big, wia) + Zz‘T’Ym) — hii Brir(wi) },

-
Il

NgE
M=y

+

7

Il
MR
I
_

where m;(t;;, bi,wi) = (i1 (tij1, bir,win)s - -+ Mia(tija, big, wis))?, and Bpi(w;) can be obtained
by using wir(biro + birit) to replace biyo + b1t in By,g. Thus, we can shown that G(w°) =

diag(gu, ey g14y - -5 0n1, - - - 79714)7 where

n; L M
gik = poRiro > Vi (R viie/ (0% = 3) + DY E{hui sy, (bino + biatina)*},
j=1 I=1 m=1
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where Ry is the (k, k)th element of the matrix Ry, v;jx = (1,¢;;1)7, and E(-) represents the
expectation taken with respect to the distribution of by, and the priors for 3, and (A, ¥,
a,)fori=1,....nand k=1,... 4.

The fourth perturbation is to perturb the prior distributions of all the parameters as follows:

By, ~ Nx(By + waolz, Hyy/wsr), oy ~ Ny(og, + waols, Hoy /war),
71 ~ Wisharty(po, ws;' R’), @' ~ Wisharts(p), w, ' Ryy), (20)

Py ~ F(T)\Oath)\l)a Ym ™~ Na(vfn + w7016, Hgm/wﬂ).

In this case, w = {wgo, Wa1, Wa0, Wal, Wros Wat, Why ws, we }, and w® = (0,1,0,1,0,1,1,1,1) repre-

sents no perturbation. The perturbed log-posterior is given by

l(w) = 14log(wgp1) + 2M log(wai) + 3M log(ws)
4

—0.5wg1 I;(ﬁk — Br —wpolr) T (Hy) ™ (B), — By — weolr)

M
—0.5wWa1 Y (@ — @0, — waoly)T(H?, )"t — @2, — waoly)
=1
M
—0.5(4071 Z (’Ym - ’)’g—b - W'yOlG)T(Hgm)il(’)’m - 7971 - W'y()]-ﬁ)
T[lL
—wpTa1 Y D By + M Lyg log(wr) + 2pp log(ws)

m=1[=1

—0.5wstr(RY'S1) + ( kz 20) 1og(ws) — 0.5w, kz tr(RY, @ 1)+ C,
= =1
where C' is a constant that does not dependent on w. We can show that
4
G(w’) = diag(GY, GO, G, M L7, 2p0, Y o),
k=1
where G = diag(1¥ (3, (HY,) )17, 14), GO = diag(11 (30 (HY,,) )14, 2M)), and G =
diag(1§ (35—, (H,,) ") 16, 3M).
The last perturbation is a simultaneous perturbation of the priors, the sampling distribu-

tions, and the individual observations. Specifically, we first perturb the sampling distributions
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and the individual observations as follows:

Yik(Lijie, wi,wp) = Bro + Braxin + - .. + Breic + wo(biko + biratije) + €iji/wi

b

>

Nike(tije, Bi, o) + Eiji /Wi,
A (t|b3, 24, wx, ) = Ao (t) exp{minin (, bir, wp) + -« + Qatia(t, bia, wp) + 27 ¥y + wr}

Secondly, we use the same perturbation given in (20) to perturb the priors of B3;, . ,,s Pmis 2
and <I>,;1. Thirdly, we also introduce a perturbation to a subset of h/ ;s. The perturbed log-

posterior is given by

3

2
A

l(w) = ; ;{410g(wz) — 5 (Yilti;) = mi(tig, bi, ) T2 (Yi(ki;) — mi(tig, bi,wn)) }
a j]\/? L n
+ z Z Z{émi(amlnﬂ( mails bwwb) +...+ am47714( mals buwb) + Z TYm + Cd)\>
m=1[=11i=1
G M
— 2 whghmleil(wA,wb)[(l € Tg)} + Z Z Z d llog(whghml)f(l S Tg>
g=1 m=11[=1g=1
+141og(wpr) + 2M log(wa) + 3M log(ws)
4
—0.5ws Y- (B — By — wpolr)" (H,) " (8), — By — weolr)
k=1
M
—0.5wWa1 Y ( — @0, — waoly)T(H, ) Hatm — @ — waoly)
k=1
M
—0.50y1 32 (Y — Yon = wr016) T (HS,) ™ (Y — ¥ — whols)
m=1
M L
—WhHrTA1 Z Z hml + MLT)\O log(wh) + 2p0 log(wg)
m=1[=1
4 4
—0.5wstr(RO'S1) + ( k; P0) log(ws) — 0.5w, k; tr(RY, @) + C,
where nl(t”, bi, Wi, wb) = (nil(tij17 bﬂ, wb), . 77]i4(tij47 bz’4, wb))T, Tg c {]_, N L} (g = 1, sy G)
is an index set and satisfies T}, (7, = 0 for every g1 # g» € {1,...,G} and T'J...U T =

{1,...,L}. In this case, w is given by
w = (wlv coey Wi,y Why WX, Wh,y - - 7thaW,B[))wﬂlawa())walaw’yo’w’ylawhvwz7w¢)a

and w® = {1,...,1,1,0,1,1,...,1,0, 1,0,1,0,1,1,1, 1} represents no perturbation. Here, we

take L = 250 and G = 5 and Ty = {1,...,50}, T» = {51,...,100}, T3 = {101,...,150},
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T, ={151,...,200} and T5 = {201,...,250}. After some calculations, we have

~

G(wo) = dia‘g<8n17 s 78nn7 Wv GO) Ggu Gf)y) MLTAO? (4p0)/2’ Z pg) (21)
k=1

Let Ry be the (k, k)th element of the matrix Ry and v = (1,%;5,)". In (21), W is given by

w, w2 V11 ... Uis
WwWe2 W3 V21 ... VUgs
W = v11 Vo1 vi ... O )
V15 Uas 0 ... Usy
in which
n n; 4 n L M
wy = Z Z Z ,OORkk,O'vz;'k(ng)ilvijk/(pgﬁk —3)+ Z Z Z E{hmleiZQani}7
z; j;l k:7:11 i=1 [=1 m=1
Wy = Z Z Z E{hmlezlqmz}7
m];l lzl zzl
ws = Z Z Z E{hpiBmi},
m=1 =1 i=1
n M n
V11 = Z Z Z E{hszmilCImz‘}, V15 = Z Z Z E{hmleiZQmi}7
m=11eTy i=1 m=11eTs i=1
M n M n
U9y = Z Z Z E{hpiBra}, ves = Z Z Z E{hpi B},
m=11eT; i=1 m=11eTs i=1
M M 4
vy = Z Z i, Vs = Z Z Ay and G = Z i (biko + bik1tri),
m=11eTy m=11eTs k=1

and E(-) represents the expectation with respect to the distribution of b;; and the priors of all

unknown parameters fort=1,...,n,5=1,...,n;,and k=1,...,4.
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Figure 1: Index plots of local influence measures (a) v, . (c) SID¢ ; and (e) gi; with p(v,,)
N(v9,, HY), (b) VB, (d) SIp_ . and (£) gsi with p(y,,) 2 N(15,0.08T5) for the first simultancous

perturbation (10).
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Figure 2: Index plots of local influence measures (a) vy, () SID¢ e; and (e) gy with p(7,,) D

N, I5), (b) vB, . (d) SID¢,eJ- and (f) g;; with p(uv) L N(12,0.0819) for the second simultaneous

perturbation.
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Figure 3: Index plots of local influence measures (a)

N(’V?naIZ)a (b) Vfla.xa (d) SID¢7ej and (f) Gii with p(u'y)

perturbation.
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