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1 Examples of Bayesian Influence Measures

We focus on assessing the influence of a perturbation scheme ω to the posterior distribution

based on three objective functions, these being the φ−divergence, the posterior mean distance,

and the Bayes factor as follows.

Example 1 (Bayes factor). The logarithm of the Bayes factor for comparing ω with ω0 is

BF(ω,ω0) = log(p(Do;ω))− log(p(Do;ω
0))

= log(
∫
p(Do,b;θ,ω)p(θ;ω)dbdθ)− log(

∫
p(Do,b;θ,ω0)p(θ;ω0)dbdθ).

The value of BF(ω,ω0) can be regarded as a statistic for testing hypotheses of ω against ω0

(Kass and Raftery, 1995). Under some smoothness conditions, BF(ω,ω0) is a continuous map

from M to R.

We set f(ω) = BF(ω,ω0) and consider a smooth curve ω(t) on M with ω(0) = ω0 and

dtω(t)|t=0 = h, where dt = d/dt. Thus, we have

dt log p(Do;ω(t))|t=0 = ∇f(ω(0))Th,

where ∇f(ω(0)) = E{∂ω log p(Do,b,θ;ω0)|Do,ω
0}, in which the conditional expectation is

taken with respect to p(b,θ;Do,ω
0). We can use MCMC methods to draw samples {(θ(s),b(s)) :

s = 1, . . . , S0} from p(b,θ;Do) and then approximate ∇f(ω(0)) by using S−1
0

∑S0

s=1 ∂ω log

p(Do,b
(s),θ(s);ω0). For instance, for the perturbation to the prior given by p(θ; t) = p(θ) +

ω{g(θ)− p(θ)}, it can be shown that

FIBF,h(ω(0)) =
E{g(θ)/p(θ)|Do}2

varP{g(θ)/p(θ)}
=
{pg(Do)/p(Do)}2

varP{g(θ)/p(θ)}
,

where varP is taken with respect to p(θ), p(Do) =
∫
p(Do,b;θ)p(θ)dbdθ, and pg(Do) =∫

p(Do,b;θ)g(θ)dbdθ. Since the ratio of pg(Do) to p(Do) is the Bayes factor in favor of g(θ)

against p(θ), the first-order local influence measure is the square of the normalized Bayes factor

of g(θ) against p(θ).
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Example 2 (φ−divergence). The φ−divergence between two posterior distributions for ω0 and

ω is defined as

ΦRI(ω,ω
0) =

∫
φ(R(b,θ;ω,ω0))p(b,θ;Do,ω

0)dbdθ,

where R(b,θ;ω,ω0) = p(b,θ;Do,ω)/p(b,θ;Do,ω
0) and φ(·) is a convex function with φ(1) =

0, such as the Kullback-Leibler divergence or the χ2-divergence (Kass et al., 1989).

We set f(ω) = ΦRI(ω,ω
0) and consider a smooth curve ω(t) on M such that ω(0) = ω0

and dtω(t)|t=0 = h. It can be shown that ∂ωf(ω(0)) = 0 and

Hf = φ̈(1)

∫
[∂ω log p(b,θ;Do,ω

0)]⊗2p(b,θ;Do,ω
0)dbdθ,

where a⊗2 = aaT for any vector a and φ̈(t) = d2φ(t)/dt2. We need to develop a computational

formula for computing Hf . Note that ∂ω log p(b,θ;Do,ω
0) equals

∂ω log p(Do,b,θ;ω0)−
∫

[∂ω log p(Do,b,θ;ω0)]p(b,θ;Do,ω
0)dbdθ.

In practice, we use MCMC methods to draw samples {(θ(s),b(s)) : s = 1, . . . , S0} from

p(θ,b;Do,ω
0) and then approximate Hf using

φ̈(1)S−1
0

S0∑
s=1

[∂ω log p(b(s), Do,θ
(s);ω(0))− S−1

0

S0∑
s′=1

∂ω log p(b(s′), Do,θ
(s′);ω(0))]⊗2.

For perturbation schemes to the prior distribution, it can be shown that

G(ω0) =

∫
[∂ω log p(θ;ω0)]⊗2p(θ;ω0)dθ

and Hf = φ̈(1)var[∂ω log p(θ;ω0)|Do,ω
0], which are, respectively, the Fisher information ma-

trices of ω(t) based on the prior and posterior distributions, where var(·|Do,ω
0) denotes the

posterior variance. For instance, for p(θ;ω(θ)) = p(θ) + ω{g(θ)− p(θ)}, we can show that

SIΦRI ,h =
φ̈(1)var{g(θ)/p(θ)|Do}

varP{g(θ)/p(θ)}
,

where varP (·) denotes the prior variance.
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Example 3 (Posterior mean distance). We measure the distance between the posterior means

of g(θ) for ω0 and ω (Kass et al., 1989; Gustafson, 1996). Specifically, we define the posterior

mean of g(θ) after introducing ω as

Mg(ω) =

∫
g(θ)p(b,θ;Do,ω)dbdθ.

Cook’s posterior mean distance for characterizing the influence of ω can be defined as follows:

CMg(ω,ω
0) = {Mg(ω)−Mg(ω

0)}TWg{Mg(ω)−Mg(ω
0)}, (1)

where Wg is chosen to be a positive definite matrix. From here onwards, Wg is chosen to be

the inverse of the posterior covariance matrix of g(θ) based on p(θ;Do,ω
0).

We set f(ω) = CMg(ω,ω
0) and consider a smooth curve ω(t) on M such that ω(0) = ω0

and dtω(t)|t=0 = h. It can be shown that ∂ωf(ω(0)) = 0 and Hf = ṀT
g WgṀg, where

Ṁg = Cov{h(θ), ∂ω log p(Do,b,θ;ω)|Do,ω
0}.

We can use MCMC methods to approximate Ṁg and Gg.

2 Simulation studies

2.1 Model Setup

In this simulation, we consider an example with two longitudinal markers and bivariate survival

times. The two longitudinal markers are monitored over time and are predictive of the bivariate

survival times. In this case, K = M = 2. Specifically, each longitudinal response was given by

yik(tijk) = ηik(tijk, bik) + εijk = βk0 + βk1tijk + βk2ri + bik0 + bik1tijk + εijk (2)

for i = 1, . . . , 100, k = 1, 2 and j = 1, . . . , ni, where the ri’s represent a baseline covariate in the

longitudinal model. Moreover, it is assumed that tij1 = tij2 for all i and j, εij = (εij1, εij2)T are
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independently and identically distributed as N2(0,Σ), and the random effects bi = (bTi1, b
T
i2)T

are distributed as N4(0,Φ), where bik = (bik0, bik1)T for k = 1, 2. Here Σ and Φ are covariance

matrices. Conditional on bi, the two events and censoring times are assumed to be independent

and their marginal hazard functions are given by

λm(t|bi, zi) = λm0(t) exp{αm1ηi1(t, bi1) + αm2ηi2(t, bi2) + zTi γm} (3)

for m = 1 and 2, where zi = (zi1, zi2)T is a vector of time-independent covariates. Let Y i(t) =

(yi1(t), yi2(t))T and ηi(t, bi) = (ηi1(t, bi1), ηi2(t, bi2))T . In this case, the density of (Y i,Ti, δi, bi)

given θ for the i-th subject is given by

p(Y i,Ti, δi, bi;θ) = C
2∏

m=1

λm(Tim|bi, zi)δim exp{−
∫ Tim

0

λm(u|bi, zi)du} ×

ni∏
j=1

(
|Σ|−1/2 exp[−1

2
{Y i(tij)− ηi(tij, bi)}TΣ−1{Y i(tij)− ηi(tij, bi)}]

)
× (4)(

|Φ|−1/2 exp(−1

2
bTi Φ−1bi)

)
,

where C is a constant independent of θ.

To carry out a Bayesian analysis, we take a joint prior distribution for θ as follows:

αm = (αm1, αm2)T ∼ N(α0
m,H

0
α), γm ∼ N(γ0

m,H
0
γ),Σ

−1 ∼Wishart2(R0, ρ0),

βk = (βk0, βk1, βk2)T ∼ N(β0
k,H

0
β),Φ−1 ∼Wishart4(R0

φ, ρ
0
φ) (5)

for k,m = 1 and 2, where α0
m, H0

α, γ0
m, H

0
γ, R

0, ρ0, R0
φ, and ρ0

φ are pre-specified hyper-

parameters. For the baseline hazard λm(·), we take a piecewise constant hazards model with

250 subintervals with equal lengths such that λm0(t) =
∑L

l=1 hml1(t ∈ (cl−1, cl]), where the cl’s

are prespecified constants. Furthermore, we take hml ∼ Γ(τ0l, τ1l) for l = 1, . . . , L = 250 and

m = 1 and 2. Finally, we can use MCMC methods (Ibrahim et al., 2001) to conduct Bayesian

influence analysis on θ and b.
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2.2 MCMC Algorithm

We need to introduce some notation. Let tij = (tij1, tij2)T , Y i(tij) = (yi1(tij1), yi2(tij2))T , and

ηi(tij, bi) = (ηi1(tij1, bi1), ηi2(tij2, bi2))T . We define

Y = {Y i(tij) : i = 1, . . . , 100, j = 1, . . . , ni}, T = {Tim : i = 1, . . . , 100,m = 1, 2},

∆ = {δim : i = 1, . . . , 100,m = 1, 2}, b = {bi : i = 1, . . . , 100},

t = {tijk : i = 1, . . . , 100, j = 1, . . . , ni, k = 1, 2},

r = {r1, . . . , r100}, Z = {zi : i = 1, . . . , 100},

h = {hml : m = 1, 2, l = 1, . . . , L},

θ = {Φ,Σ,α1,α2,γ1,γ2,β1,β2,h}.

Then, the joint probability density function of (Y ,T ,∆, b, θ) given (r,Z, t) is proportional to

|Σ|−
N+ρ0−3

2 |Φ|−
100+ρ0φ−5

2 exp

[
−1

2

100∑
i=1

ni∑
j=1

(Y i(tij)− ηi(tij, bi))TΣ−1(Y i(tij)− ηi(tij, bi))

+
2∑

m=1

L∑
l=1

100∑
i=1

{
δim
(
αm1ηi1(t∗mil, bi1) + αm2ηi2(t∗mil, bi2) + zTi γm

)
− hmlBmil

}
+

2∑
m=1

L∑
l=1

dml log(hml)−
1

2

100∑
i=1

bTi Φ−1bi −
1

2

2∑
m=1

(αm −α0
m)T (H0

α)−1(αm −α0
m) (6)

−1

2
tr(Σ−1R−1

0 )− 1

2

2∑
m=1

(γm − γ0
m)T (H0

γ)
−1(γm − γ0

m)−
2∑

m=1

L∑
l=1

τ1lhml

−1

2

2∑
k=1

(βk − β0
k)
T (H0

β)−1(βk − β0
k)−

1

2
tr(Φ−1(R0

φ)−1)

](
2∏

m=1

L∏
l=1

hτ0l−1
ml

)
,

where N =
∑n

i=1 ni, dml is the number of failures in the lth time interval Iml = (cm,l−1, cm,l], and

t∗mil denotes the nearest past time point where responses are taken. Moreover, Bmil is defined

as follows:

(i) if Tim < cm,l−1, Bmil = 0;

(ii) if Tim > cm,l, letting (hmi1, smi1) = max{(h, s) : A∗ihs ≤ cm,l−1} and (hmi2, smi2) =
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max{(h, s) : A∗ihs ≤ cm,l}, where A∗ihs is the rescaled tihs so that A∗ihs has the same unit as Tim,

then if hmi1 = hmi2 and smi1 = smi2,

Bmil = (cm,l − cm,l−1) exp{αm1ηi1(ti,hmi1,smi1 , bi1) + αm2ηi2(ti,hmi1,smi1 , bi2) + zTi γm};

if hmi1 = hmi2 and smi1 < smi2,

Bmil = (A∗i,hmi1,smi1+1 − cm,l−1) exp{αm1ηi1(ti,hmi1,smi1+1, bi1) + αm2ηi2(ti,hmi1,smi1+1, bi2)

+zTi γm}+
smi2∑

l=smi1+1

(A∗i,hmi1,l+1 − A∗i,hmi1,l) exp{αm1ηi1(ti,hmi1,l, bi1)

+αm2ηi2(ti,hmi1,l, bi2) + zTi γm}+ (cm,l − A∗i,hmi1,smi2) exp{αm1ηi1(ti,hmi1,smi2 , bi1)

+αm2ηi2(ti,hmi1,smi2 , bi2) + zTi γm};

if smi1 = smi2 and hmi1 < hmi2,

Bmil = (A∗i,hmi1+1,smi1
− cm,l−1) exp{αm1ηi1(ti,hmi1+1,smi1 , bi1) + αm2ηi2(ti,hmi1+1,smi1 , bi2)

+zTi γm}+
hmi2∑

l=hmi1+1

(A∗i,l+1,smi1
− A∗i,l,smi1) exp{αm1ηi1(ti,l,smi1 , bi1)

+αm2ηi2(ti,l,smi1 , bi2) + zTi γm}+ (cm,l − A∗i,hmi2,smi1) exp{αm1ηi1(ti,hmi2,smi1 , bi1)

+αm2ηi2(ti,hmi2,smi1 , bi2) + zTi γm};

if hmi1 < hmi2 and smi1 < smi2,

Bmil = (A∗i,hmi1+1,smi1+1 − cm,l−1) exp{αm1ηi1(ti,hmi1+1,smi1+1, bi1) + αm2ηi2(ti,hmi1+1,smi1+1, bi2)

+zTi γm}+
hmi2∑

κ=hmi1+1

smi2∑
l=smi1+1

(A∗i,κ+1,l+1 − A∗iκl) exp{αm1ηi1(tiκl, bi1)

+αm2ηi2(tiκl, bi2) + zTi γm}+ (cm,l − A∗i,hmi2,smi2) exp{αm1ηi1(ti,hmi2,smi2 , bi1)

+αm2ηi2(ti,hmi2,smi2 , bi2) + zTi γm};

(iii) if cm,l−1 < Tim ≤ cm,l, using hmi1, hmi2, smi1 and smi2 given in (ii), then if (hmi1, smi1)

= (hmi2, smi2) or Tim ≤ A∗i,hmi1+1,smi1
when hmi1 < hmi2 and smi1 = smi2 or Tim ≤ A∗i,hmi1,smi1+1

when hmi1 = hmi2 and smi1 < smi2 or Tim ≤ A∗i,hmi1+1,smi1+1 when hmi1 < hmi2 and smi1 < smi2,

Bmil = (Tim − cm,l−1) exp{αm1ηi1(ti,hmi1,smi1 , bi1) + αm2ηi2(ti,hmi1,smi1 , bi2) + zTi γm},
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and otherwise, we define

Bmil = (A∗i,hmi1+1,smi1+1 − cm,l−1) exp{αm1ηi1(ti,hmi1+1,smi1+1, bi1) + αm2ηi2(ti,hmi1+1,smi1+1, bi2)

+zTi γm}+
ιi1∑

κ=hmi1+1

ιi2∑
l=smi1+1

(A∗i,κ+1,l+1 − A∗iκl) exp{αm1ηi1(tiκl, bi1)

+αm2ηi2(tiκl, bi2) + zTi γm}+ (Tim − A∗i,ιi1,ιi2) exp{αm1ηi1(ti,ιi1,ιi2 , bi1)

+αm2ηi2(ti,ιi1,ιi2 , bi2) + zTi γm},

where hmi1 + 1 ≤ ιi1 ≤ hmi2 and smi1 ≤ ιi2 ≤ smi2 are chosen so that A∗i,ιi1,ιi2 < Tim ≤

A∗i,ιi1+1,ιi2+1.

When (hmi1, smi1) does not exist, we define hmi1 = smi1 = 1, and the calculation of Bmil

needs a minor adjustment.

The Gibbs sampler is used to sample a sequence of random observations from the above joint

posterior distribution given in (6). Specifically, {Φ,Σ,α1,α2,γ1,γ2,β1,β2,h, b} are iteratively

drawn from the following full conditional distributions:

p(Φ−1|b),

p(Σ−1|Y , t, b),

p(αm,γm|∆, b,Y ,T , r,Z, t,β1,β2,h),

p(βk|∆, b,Y ,T , r,Z, t,α1,α2,γ1,γ2,h),

p(b|∆,Y ,T , r,Z, t,α1,α2,γ1,γ2,β1,β2,h,Φ,Σ),

p(h|∆, b,T , r,Z, t,α1,α2,γ1,γ2,β1,β2).

The above mentioned full conditional distributions are briefly discussed as follows. Let a⊗2 =
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aaT for any vector or matrix a. It is easily shown from (6) and (5) that

p(Φ−1|b) ∼Wishart4(ρ0
φ + 100, (R0

φ)−1 +
n∑
i=1

bib
T
i ),

p(Σ−1|Y , t, b) ∼Wishart2(ρ0 +
100∑
i=1

ni, ((R
0)−1 +

100∑
i=1

ni∑
j=1

[Y i(tij)− ηi(tij, bi)]⊗2)−1),

p(hml|b, t,T , r,Z,α1,α2,γ1,γ2,β1,β2) ∼ Γ(τ0l + dml, τ1l +
100∑
i=1

Bmil).

It follows from (6) and (5) that p(αm,γm|∆, b,Y ,T , r,Z, t,β1,β2,h) is proportional to

exp

[
L∑
l=1

100∑
i=1

{
δim
(
αm1ηi1(t∗mil, bi1) + αm2ηi2(t∗mil, bi2) + zTi γm

)
− hmlBmil

}
(7)

−1

2
(αm −α0

m)T (H0
α)−1(αm −α0

m)− 1

2
(γm − γ0

m)T (H0
γ)
−1(γm − γ0

m)

]
.

Moreover, p(βk|∆, b,Y ,T , r,Z, t,α1,α2,γ1,γ2,h) is proportional to

exp

[
−1

2

100∑
i=1

ni∑
j=1

(Y i(tij)− ηi(tij, bi))TΣ−1(Y i(tij)− ηi(tij, bi))+

2∑
m=1

L∑
l=1

100∑
i=1

(δimαmkηik(t
∗
mil, bik)− hmlBmil)−

1

2
(βk − β0

k)
T (H0

β)−1(βk − β0
k)

]
(8)

and p(bi|∆,Y ,T , r,Z, t,α1,α2,γ1,γ2,β1,β2,h) is proportional to

exp

[
−1

2

ni∑
j=1

(Y i(tij)− ηi(tij, bi))TΣ−1(Y i(tij)− ηi(tij, bi)) (9)

+
2∑

m=1

L∑
l=1

{δim (αm1ηi1(t∗mil, bi1) + αm2ηi2(t∗mil, bi2))− hmlBmil} −
1

2
bTi Φ−1bi

]
.

Let Ω−1
u = diag((H0

α)−1, (H0
γ)
−1) +

100∑
i=1

L∑
l=1

hmlBmil, where Bmil = ∂2Bmil/∂um∂u
T
m|um=0

with um = (αTm,γ
T
m)T . The Metropolis-Hasting (MH) algorithm is implemented to draw ran-

dom samples from the conditional distribution (7) as follows. At the (d+ 1)st iteration with a

u
(d)
m , a new candidate um is generated from N(u

(d)
m , σ2

uΩu) and is accepted with probability

min

{
1,

p(αm,γm|∆, b,Y ,T , r,Z, t,β1,β2,h)

p(α
(d)
m ,γ

(d)
m |∆, b,Y ,T , r,Z, t,β1,β2,h)

}
,

8



in which σ2
u is selected such that the average acceptance rate is about 25% or more.

Similarly, the MH algorithm for sampling βk from p(βk|∆, b,Y ,T , r,Z, t,α1,α2,γ1,γ2,h)

given in (8) is implemented as follows. At the (d+ 1)th iteration with a β
(d)
k , a new candidate

βk is simulated from the proposal distribution N(β
(d)
k , σ2

βΩβ), where

Ω−1
β =

100∑
i=1

ni∑
j=1

σkkqijkq
T
ijk +

2∑
m=1

L∑
l=1

100∑
i=1

hmlCmil + (H0
β)−1

with qTijk = (1, tijk, ri) and Cmil = ∂2Bmil/∂βk∂β
T
k |βk=0, in which σkk is the (k, k)th component

of Σ−1. The acceptance probability is

min

{
1,

p(βk|∆, b,Y ,T , r,Z, t,α1,α2,γ1,γ2,h)

p(β
(d)
k |∆, b,Y ,T , r,Z, t,α1,α2,γ1,γ2,h)

}
.

Sampling bi from p(bi|∆,Y ,T , r,Z, t,α1,α2,γ1,γ2,β1,β2,h) as given in (9) can be im-

plemented as follows. At the (d+ 1)st iteration with a current value b
(d)
i , a new candidate bi is

simulated from the proposal distribution N(b
(d)
i , σ2

bΩb) and is accepted with probability

min

{
1,

p(bi|∆,Y ,T , r,Z, t,α1,α2,γ1,γ2,β1,β2,h)

p(b
(d)
i |∆,Y ,T , r,Z, t,α1,α2,γ1,γ2,β1,β2,h)

}
,

where Ωb = Φ−1 +
∑ni

j=1A
T
ijΣ

−1Aij +
∑2

m=1

∑L
l=1 hml∂

2Bmil/∂bi∂b
T
i |bi=0 with

Aij =

 1 tij1 0 0

0 0 1 tij2

 .

2.3 Influence analysis

In the first simulation study, we considered the JMLS specified in (2)-(4) with the following

additional specifications. In model (2), the longitudinal measurements were observed at time

points tij1 = tij2 = 0.0, 0.5, 1.0, 1.5, 2.0 and ri was generated from N(0, 0.8) for i = 1, . . . , 100

and other true parameter values were given by (β10, β11, β12) = (0.4, 0.3, 0.5), (β20, β21, β22) =
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(0.2, 0.4, 0.3), and

Σ =

 0.4 0.1

0.1 0.4

 ,Φ1 =

 0.4 0.2

0.2 0.4

 ,Φ2 =

 0.3 0.1

0.1 0.3

 .

In model (3), the two components of zi = (zi1, zi2)T were, respectively, generated from zi1 ∼

N(0.0, 0.15) and zi2 ∼ N(0.5zi1, 0.20). Moreover, the survival times T1i and T2i were indepen-

dently generated from λm(t|bi, zi) with the following specifications:

λ10(t) = 0.85, λ20(t) = 0.70, α11 = −α21 = 0.3, α12 = −α22 = 0.4, and γ1 = γ2 = (0.25, 0.35)T .

The censoring times Cmi for m = 1 and 2 were independently generated via Cmi = 1.2 when

1.2 > 4.5umi and 4.5umi otherwise, where umi was independently generated from a uniform

distribution U(0, 1).

To carry out the Bayesian analysis, we specify the prior distribution of θ according to (5).

The hyperparameters of p(θ) were set as α0
1 = (0.3, 0.4)T , α0

2 = (−0.3,−0.4)T , H0
α = I2,

γ0
m = (0.25, 0.35)T for m = 1 and 2, H0

γ = I2, β0
1 = (0.4, 0.3, 0.5)T , β0

2 = (0.2, 0.4, 0.3)T ,

H0
β = I3, ρ0 = ρ0

1 = ρ0
2 = 10, R0 = 5Σ, R0

φk = 5Φk for k = 1 and 2, and τ0l = 10.0 and

τ1l = 8.0 for l = 1, . . . , 250.

We simultaneously perturbed the mean of the longitudinal measures Y i(t), the distribution

of bi, the prior distributions of αm and γm and the marginal hazard function λm(t|bi, zi) as

follows:

Y i(tij) = ηi(tij, bi) + ωy,i12 + εij, p(bi;θb,ωb,i) ∼ N4(0, ω−1
b,i Φ),

λm(t|bi, zi, ωλ) = λm0(t) exp{αm1ηi1(t, bi1) + αm2ηi2(t, bi2) + ωλ,mz
T
i γm},

p(αm|ωα1, ωα2) ∼ N(α0
m + ωα212,H

0
α/ωα1),

p(γm|ωγ1, ωγ2) ∼ N(γ0
m + ωγ212,H

0
γ/ωγ1). (10)

Then, we calculated G(ω0), and then chose the perturbation scheme ω̃ = ω0+G(ω0)1/2(ω−ω0).
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Subsequently, we used the logarithm of the Bayes factor to calculate the associated local influ-

ence measures vfmax = argmax{FIf [v](ω̃(0))} using the aforementioned MCMC methods. To

introduce some outliers, we changed the longitudinal measurements of the last two individu-

als, Y i(tij1), to Y i(tij1) + 2.012 for j = 1, . . . , ni and i = 99, 100. Posterior estimates of the

parameters under the perturbations are obtained by the Gibbs sampler, and a total of 5000

iterations after 5000 burn-in are used to compute the local influence measures with respect to

a given perturbation scheme. Cases 99 and 100 were detected to be influential by our local

influence measures (Fig. 1(a)). Furthermore, we used the same setup except that we employed

a perturbed prior distribution for γm, namely p(γm) = N(12, 0.08I2), and then we applied the

same MCMC methods, perturbation scheme, and local influence measures. Cases 99 and 100

and the perturbed prior distribution of γm were identified to be influential (Fig. 1(b)). Figures

1(c) and 1(d) show that the metric tensor gii(ω
0) for perturbation (10) has little change for all

the individuals, and there is a large change for the metric tensor gii(ω
0) corresponding to the

perturbation in the hazard function.

In the second simulation study, we used almost the same setup except that we employed

a single-case perturbation to the variances of the errors in model (2). In this case, gy,ii = ni

for i = 1, . . . , n in the metric tensor G(ω0). We considered the local influence measures based

on both the logarithm of the Bayes factor and the Kullback-Leibler divergence. As expected,

cases 99 and 100 were detected to be influential by our local influence measures vBmax and

SIDφ,ej
with the two priors of γm, namely p(γm) = N(γ0

m,H
0
γ) (Figs. 2(a) and 2(c)) and

p(γm) = N(12, 0.08I2) (Figs. 2(b) and 2(d)). Also, the perturbed prior distribution of γm was

identified to have a big effect (Figs. 2(b) and 2(d)). Figures 2(e) and 2(f) show that the metric

tensor gii(ω
0) for the variance perturbation has little change for all the individuals, and there

is a large change for the metric tensor gii(ω
0) corresponding to the perturbation in the hazard

function.
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In the third simulation study, we examined whether our local influence measures can detect

the misspecified relationship between the survival time and the covariates of interest. We

generated the data using the same setting as specified in the above simulation studies, but the

hazard functions were taken as

λm(t|bi, zi) = λm0 exp{αm1ηi1(t, bi1) + αm2ηi2(t, bi2) + zTi γm + atzi2} (11)

for m = 1 and 2 with the values of parameters (λm0, αm1, αm2,γm) being pre-specified for a

given value of a. However, we fitted the model specified in (2) and

λm(t|bi, zi) = λm0(t) exp{αm1ηi1(t, bi1) + αm2ηi2(t, bi2) + zTi γm}

using the same priors as given in the first simulation study. The fitted model would be mis-

specified if a 6= 0. We considered a global perturbation as follows:

λm(t|bi, zi, ω) = λm0 exp{αm1ηi1(t, bi1) + αm2ηi2(t, bi2) + zTi γm + ωtzi2}, (12)

which was used to check whether the local influence measures can detect the missing interaction

term between time and zi2. In this case, ω = 0 represents no perturbation. The local influence

measure of the logarithm of the Bayes factor was calculated and denoted as tB. Then, 1000

bootstrap datasets were generated from the fitted model to calculate the local influence measures

of the logarithm of the Bayes factor, denoted as tkB (k = 1, . . . , 1000), which led to the associated

p-values. The p-values were calculated to be 3%, 2% and 1% when a was taken to be 0.28, 0.30

and 0.35, respectively. These results indicate that the survival model is misspecified at the 5%

significance level for these values of a. Therefore, the local influence method was useful for

detecting the model misspecification in this example.

In the forth simulation study, we examined whether our local influence measure can assess

the misspecified relationship between the longitudinal measurements and the survival times.

12



We generated the data according to almost the same setting except that the hazard functions

were taken as

λm(t|bi, zi) = λm0 exp{αm1ηi1(t, bi1) + aηi2(t, bi2) + zTi γm} for m = 1, 2. (13)

However, we fitted the model specified in (2)-(4), in which λm(t|bi, zi) = λm0 exp{αm1ηi1(t, bi1)+

zTi γm} under the same prior distribution as given in the first simulation study. The fitted model

would be misspecified if a 6= 0. We considered the following global perturbation

λm(t|bi, zi) = λm0 exp{αm1ηi1(t, bi1) + ωηi2(t, bi2) + zTi γm}

to check model misspecification. In this case, ω = 0 represents no perturbation. Again, by

using the wild bootstrap method, the corresponding p-values were given by 4% and 5% when a

was taken to be 0.36 and 0.32, respectively. These results indicate that the longitudinal model

is misspecified at the 5% significance level for b = 0.36 and 0.32.

In the fifth simulation study, we examined whether our local influence measure can assess

the multiple misspecifications of the longitudinal model and the survival model, as well as

detect outliers. We generated the data using almost the same setting as specified in the first

simulation study except for Σ =

 1.000 0.485

0.485 0.640

, but the longitudinal measurement model

was taken as

yik(tijk) = ηik(tijk) + εijk = βk0 + βk1tijk + βk2ri + εijk,

and the hazard functions were taken as

λm(t|zi) = λm0 exp{αm1ηi1(t) + zTi γm} for m = 1, 2.

However, we fitted the generated data with the model specified in (2)-(4) under the same prior

distribution as given in the first simulation study. The above specified longitudinal measure-

ment model violates the model assumptions in the following two ways: (i) we don’t include
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random effects to induce correlation between the repeated observations, (ii) the variability of

the marginal error terms decreases as time increases. The above specified hazard function vi-

olates the assumption of the survival model in the following two ways: (i) we postulate that

the time-to-event does not depend on the underlying random effects; (ii) we postulate that the

time-to-event is not associated with ηi2(t). To introduce some outliers, we changed the longi-

tudinal measurements of the last two individuals, Y i(tij1), to Y i(tij1) + 2.012 for j = 1, . . . , ni

and i = 99, 100. We consider a simultaneous perturbation as follows:

p(yi(tij)|ωi) ∼ N(ηi(tij),Σ/ωi), p(γm|ωγ) ∼ N(γ0
m,H

0
γ/ωγ),

yik(tijk) = ηik(tijk, bi) + εijk = βk0 + βk1tijk + βk2ri + ωb(bik0 + bik1tijk) + εijk,

λm(t|bi, zi, ωλ) = λm0 exp{αm1ηi1(t, bi1) + ωλαm2ηi2(t, bi2) + zTi γm},

where tij = (tij1, tij2)T , yi(tij) = (yi1(tij1), yi2(tij2))T and ηi(tij) = (ηi1(tij1), ηi2(tij2))T . In this

case, ωi = 1, ωγ = 1, ωb = 0 and ωλ = 0 represent no perturbation. We considered the local

influence measures based on both the logarithm of the Bayes factor and the Kullback-Leibler

divergence. As expected, cases 99 and 100 were detected to be influential by our local influence

measures vBmax and SIDφ,ej
with the two priors of γm, namely p(γm) = N(γ0

m,H
0
γ) (Figs.

3(a) and 3(c)) and p(γm) = N(12, 0.08I2) (Figs. 3(b) and 3(d)). Also, the perturbed prior

distribution of γm was identified to have a big effect (Figs. 3(b) and 3(d)); the longitudinal

measurement model and the hazard function were detected to be misspecified. Figures 3(e)

and 3(f) show that the metric tensor gii(ω
0) for the perturbation to the variance of the errors

has little change for all the individuals, and there is a large change for the metric tensor gii(ω
0)

corresponding to the perturbation to the longitudinal measurement model and the hazard

function.
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3 Application to the IBCSG data

3.1 MCMC Algorithm

We need to introduce some notation. Let tij = (tij1, . . . , tij4)T , Y i(tij) = (yi1(tij1), . . . , yi4(tij4))T ,

and ηi(tij, bi) = (ηi1(tij1, bi1), . . . , ηi4(tij4, bi4))T , where bi = {bik : k = 1, . . . , 4} and bik =

(bik0, bik1)T and ηik(t, bik) = βk0 + βk1xi1 + . . .+ βk6xi6 + βk7t+ bik0 + bik1t. We define

Y = {Y i(tij) : i = 1, . . . , 832; j = 1, 2, 3},T = {Tim : i = 1, . . . , 832;m = 1, 2},

∆ = {δim : i = 1, . . . , 832,m = 1, 2}, b = {bi : i = 1, . . . , 832},

t = {tijk : i = 1, . . . , 832; j = 1, 2, 3; k = 1, . . . , 4},X = {xi = (xi1, . . . , xi6) : i = 1, . . . , 832},

Z = {zi : i = 1, . . . , 832},h = {hml : m = 1, 2, l = 1, . . . , L},

αm = (αm1, . . . , αm4)T for m = 1, 2;

βk = (βk0, βk1, . . . , βk7)T for k = 1, . . . , 4,

θ = {Φ1, . . . ,Φ4,Σ,α1,α2,γ1,γ2,β1, . . . ,β4,h}.

Then, the joint probability density function of (Y ,T ,∆, b, θ) given (X,Z, t) is proportional

to

|Σ|−
N+ρ0−3

2 (
4∏

k=1

|Φk|−
n+ρ0φk−3

2 ) exp

[
−1

2

n∑
i=1

3∑
j=1

(Y i(tij)− ηi(tij, bi))TΣ−1(Y i(tij)− ηi(tij, bi))

+
2∑

m=1

L∑
l=1

n∑
i=1

{
δim
(
αm1ηi1(t∗mil, bi1) + . . .+ αm4ηi4(t∗mil, bi4) + zTi γm

)
− hmlBmil

}
+

2∑
m=1

L∑
l=1

dml log(hml)−
1

2

n∑
i=1

4∑
k=1

bTikΦ
−1
k bik −

1

2

2∑
m=1

(αm −α0
m)T (H0

α)−1(αm −α0
m) (14)

−1

2
tr(Σ−1R−1

0 )− 1

2

2∑
m=1

(γm − γ0
m)T (H0

γ)
−1(γm − γ0

m)−
2∑

m=1

L∑
l=1

τ1lhml

−1

2

4∑
k=1

(βk − β0
k)
T (H0

β)−1(βk − β0
k)−

1

2

4∑
k=1

tr(Φ−1
k (R0

φk)
−1)

](
2∏

m=1

L∏
l=1

hτ0l−1
ml

)
,
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where N = 1664, n = 832, dml is the number of failures in the lth time interval Iml =

(cm,l−1, cm,l], and t∗mil denotes the nearest past time point where responses are taken. Moreover,

Bmil is defined as follows:

(i) if Tim < cm,l−1, Bmil = 0;

(ii) if Tim > cm,l, letting (hmi1, smi1) = max{(h, s) : A∗ihs ≤ cm,l−1} and (hmi2, smi2) =

max{(h, s) : A∗ihs ≤ cm,l}, where A∗ihs is the rescaled tihs so that A∗ihs has the same unit as Tim,

then if hmi1 = hmi2 and smi1 = smi2,

Bmil = (cm,l − cm,l−1) exp{αm1ηi1(ti,hmi1,smi1 , bi1) + . . .+ αm4ηi4(ti,hmi1,smi1 , bi4) + zTi γm};

if hmi1 = hmi2 and smi1 < smi2,

Bmil = (A∗i,hmi1,smi1+1 − cm,l−1) exp{αm1ηi1(ti,hmi1,smi1+1, bi1) + αm2ηi2(ti,hmi1,smi1+1, bi2)

+zTi γm}+
smi2∑

l=smi1+1

(A∗i,hmi1,l+1 − A∗i,hmi1,l) exp{αm1ηi1(ti,hmi1,l, bi1) + . . .

+αm4ηi4(ti,hmi1,l, bi4) + zTi γm}+ (cm,l − A∗i,hmi1,smi2) exp{αm1ηi1(ti,hmi1,smi2 , bi1)

+ . . .+ αm4ηi4(ti,hmi1,smi2 , bi4) + zTi γm};

if smi1 = smi2 and hmi1 < hmi2,

Bmil = (A∗i,hmi1+1,smi1
− cm,l−1) exp{αm1ηi1(ti,hmi1+1,smi1 , bi1) + . . .+ αm4ηi4(ti,hmi1+1,smi1 , bi4)

+zTi γm}+
hmi2∑

l=hmi1+1

(A∗i,l+1,smi1
− A∗i,l,smi1) exp{αm1ηi1(ti,l,smi1 , bi1) + . . .

+αm4ηi4(ti,l,smi1 , bi4) + zTi γm}+ (cm,l − A∗i,hmi2,smi1) exp{αm1ηi1(ti,hmi2,smi1 , bi1)

+ . . .+ αm4ηi4(ti,hmi2,smi1 , bi4) + zTi γm};

if hmi1 < hmi2 and smi1 < smi2,

Bmil = (A∗i,hmi1+1,smi1+1 − cm,l−1) exp{αm1ηi1(ti,hmi1+1,smi1+1, bi1) + . . .+ αm2ηi2(ti,hmi1+1,smi1+1, bi2)

+zTi γm}+
hmi2∑

κ=hmi1+1

smi2∑
l=smi1+1

(A∗i,κ+1,l+1 − A∗iκl) exp{αm1ηi1(tiκl, bi1) + . . .

+αm4ηi4(tiκl, bi4) + zTi γm}+ (cm,l − A∗i,hmi2,smi2) exp{αm1ηi1(ti,hmi2,smi2 , bi1)

+ . . .+ αm4ηi4(ti,hmi2,smi2 , bi4) + zTi γm};
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(iii) if cm,l−1 < Tim ≤ cm,l, using hmi1, hmi2, smi1 and smi2 given in (ii), then if (hmi1, smi1)

= (hmi2, smi2) or Tim ≤ A∗i,hmi1+1,smi1
when hmi1 < hmi2 and smi1 = smi2 or Tim ≤ A∗i,hmi1,smi1+1

when hmi1 = hmi2 and smi1 < smi2 or Tim ≤ A∗i,hmi1+1,smi1+1 when hmi1 < hmi2 and smi1 < smi2,

Bmil = (Tim − cm,l−1) exp{αm1ηi1(ti,hmi1,smi1 , bi1) + . . .+ αm4ηi4(ti,hmi1,smi1 , bi4) + zTi γm},

and otherwise, we define

Bmil = (A∗i,hmi1+1,smi1+1 − cm,l−1) exp{αm1ηi1(ti,hmi1+1,smi1+1, bi1) + . . .+ αm4ηi4(ti,hmi1+1,smi1+1, bi4)

+zTi γm}+
ιi1∑

κ=hmi1+1

ιi2∑
l=smi1+1

(A∗i,κ+1,l+1 − A∗iκl) exp{αm1ηi1(tiκl, bi1) + . . .

+αm4ηi4(tiκl, bi4) + zTi γm}+ (Tim − A∗i,ιi1,ιi2) exp{αm1ηi1(ti,ιi1,ιi2 , bi1) + . . .

+αm4ηi4(ti,ιi1,ιi2 , bi4) + zTi γm},

where hmi1 + 1 ≤ ιi1 ≤ hmi2 and smi1 ≤ ιi2 ≤ smi2 are chosen so that A∗i,ιi1,ιi2 < Tim ≤

A∗i,ιi1+1,ιi2+1.

When (hmi1, smi1) does not exist, we define hmi1 = smi1 = 1, and the calculation of Bmil

needs a minor adjustment.

To carry out the Bayesian analysis, we specified the following prior distributions:

αm = (αm1, . . . , αm4)T ∼ N(α0
m,H

0
α), γm ∼ N(γ0

m,H
0
γ), Σ−1 ∼Wishart4(R0, ρ0),

βk = (βk0, . . . , βk7)T ∼ N(β0
k,H

0
β), hml ∼ Γ(τ0l, τ1l), Φ−1

k ∼Wishart2(R0
φk, ρ

0
φk) (15)

for m = 1 and 2, and k = 1, . . . , 4, where h = {hml : m = 1, 2, l = 1, . . . , L}, α0
m, H0

α, γ0
m, H

0
γ,

R0, ρ0, β0
k, H

0
β, τ0l, τ1l, R

0
φk, and ρ0

φk are pre-specified hyper-parameters. Moreover, α0
m, γ

0
m,

β0
k, R

0, and R0
φk were set as their Bayesian posterior estimates that were obtained from the

MCMC algorithm under the noninformative prior distributions of αm,γm, Σ, βk, and Φ−1
k .

The Gibbs sampler is used to sample a sequence of random observations from the above

joint posterior distribution given in Equation (14). Specifically, we iteratively simulate from
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the following full conditional distributions:

p(Φ−1
k |b),

p(Σ−1|Y , t, b),

p(αm,γm|∆, b,Y ,T ,X,Z, t,β1, . . . ,β4,h),

p(βk|∆, b,Y ,T ,X,Z, t,α1,α2,γ1,γ2,h),

p(b|∆,Y ,T ,X,Z, t,α1,α2,γ1,γ2,β1, . . . ,β4,h,Φ1, . . . ,Φ4,Σ),

p(h|∆, b,T ,X,Z, t,α1,α2,γ1,γ2,β1, . . . ,β4).

The above mentioned full conditional distributions are briefly discussed as follows.

First, it is easily shown from (14) and (15) that

p(Φ−1
k |b) ∼Wishart4(ρ0

φk + n, (R0
φk)
−1 +

n∑
i=1

bikb
T
ik) for k = 1, . . . , 4,

p(Σ−1|Y , t, b) ∼Wishart2(ρ0 + 2n, {(R0)−1 +
n∑
i=1

3∑
j=1

[Y i(tij)− ηi(tij, bi)]⊗2}−1),

p(hml|b, t,T ,X,Z,α1,α2,γ1,γ2,β1, . . . ,β4) ∼ Γ(τ0l + dml, τ1l +
n∑
i=1

Bmil).

It is easily shown from (14) and (15) that p(αm,γm|∆, b,Y ,T ,X,Z, t,β1, . . ., β4,h) is

proportional to

exp

[
L∑
l=1

n∑
i=1

{
δim
(
αm1ηi1(t∗mil, bi1) + . . .+ αm4ηi4(t∗mil, bi4) + zTi γm

)
− hmlBmil

}
−1

2
(αm −α0

m)T (H0
α)−1(αm −α0

m)− 1

2
(γm − γ0

m)T (H0
γ)
−1(γm − γ0

m)

]
. (16)

Also, p(βk|∆, b,Y ,T ,X,Z, t,α1,α2,γ1,γ2,h) is proportional to

exp

[
−1

2

n∑
i=1

3∑
j=1

(Y i(tij)− ηi(tij, bi))TΣ−1(Y i(tij)− ηi(tij, bi)) +
2∑

m=1

L∑
l=1

n∑
i=1

(δimαmk

×ηik(t∗mil, bik)− hmlBmil)−
1

2
(βk − β0

k)
T (H0

β)−1(βk − β0
k)

]
. (17)
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Again, p(bik|∆,Y ,T ,X,Z, t,α1,α2,γ1,γ2,β1, . . . ,β4,h,Φk,Σ) is proportional to

exp

[
−1

2

2∑
j=1

(Y i(tij)− ηi(tij, bi))TΣ−1(Y i(tij)− ηi(tij, bi)) (18)

+
2∑

m=1

L∑
l=1

{δimαmkηik(t∗mil, bik)− hmlBmil} −
1

2
bTikΦ

−1
k bik

]
.

To simulate observations from the full conditional distribution relating to (16), we define

Ω−1
u = diag((H0

α)−1, (H0
γ)
−1) +

n∑
i=1

L∑
l=1

hmlBmil,

where Bmil = ∂2Bmil/∂um∂u
T
m|um=0 with um = (αTm,γ

T
m)T . The MH algorithm is implemented

as follows. At the (d + 1)st iteration with a u
(d)
m , a new candidate um is generated from a

N(u
(d)
m , σ2

uΩu) distribution and is accepted with probability

min

{
1,

p(αm,γm|∆, b,Y ,T ,X,Z, t,β1,β2,h)

p(α
(d)
m ,γ

(d)
m |∆, b,Y ,T ,X,Z, t,β1,β2,h)

}
.

σ2
u is selected such that the average acceptance rate is about 25% or more.

Similarly, the MH algorithm for sampling βk from p(βk|∆, b,Y ,T , r,Z, t,α1,α2,γ1, γ2,h)

given in (17) is implemented as follows. Let σkk be the (k, k)th component of Σ−1. At the

(d+ 1)st iteration with a β
(d)
k , a new candidate βk is simulated from the proposal distribution

N(β
(d)
k , σ2

βΩβ), where Ω−1
β = 2

∑n
i=1 σ

kkqiq
T
i +

∑2
m=1

∑L
l=1

∑n
i=1 hmlCmil + (H0

β)−1 with qTi =

(1,xTi ) and Cmil = ∂2Bmil/∂βk∂β
T
k |βk=0. The acceptance probability is

min

{
1,

p(βk|∆, b,Y ,T ,X,Z, t,α1,α2,γ1,γ2,h)

p(β
(d)
k |∆, b,Y ,T ,X,Z, t,α1,α2,γ1,γ2,h)

}
.

Sampling bik from p(bik|∆,Y ,T ,X,Z, t,α1,α2,γ1,γ2,β1, . . . ,β4,h,Φk,Σ) as given in

Equation (18) can be implemented as follows. At the (d + 1)st iteration with a current value

b
(d)
ik , a new candidate bik is simulated from the proposal distribution N(b

(d)
ik , σ

2
bΩbk) and is

accepted with probability

min

{
1,
p(bik|∆,Y ,T ,X,Z, t,α1,α2,γ1,γ2,β1, . . . ,β4,h,Φk,Σ)

p(b
(d)
ik |∆,Y ,T ,X,Z, t,α1,α2,γ1,γ2,β1, . . . ,β4,h,Φk,Σ)

}
,
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where Ωb = Φ−1
k +

∑2
j=1 σ

kkAijkA
T
ijk +

∑2
m=1

∑L
l=1 hml∂

2Bmil/∂bik∂b
T
ik|bik=0 with Aijk =

(1, tijk)
T .

3.2 Influence analysis

The first perturbation is a single-case perturbation obtained by perturbing each subject’s lon-

gitudinal profile as follows:

yik(tijk, ωijk) = βk0 + βk1xi1 + . . .+ βk6xi6 + βk7tijk + bik0 + bik1tijk + εijk/ωijk. (19)

In this case, ω = (ωT11, . . . ,ω
T
1n1
, . . . ,ωTn1, . . . ,ω

T
nnn)T , in which ωij = (ωij1, . . . , ωij4)T for i =

1, . . . , n = 832 and j = 1, 2, 3, and ω0 = 1 presents no perturbation, where 1 is a vector with

all ones. Let W ij = diag(ωij1, . . . , ωij4) for all i, j. The perturbed log-posterior likelihood l(ω)

is given by

l(ω) =
n∑
i=1

ni∑
j=1

{
4∑

k=1

log(ωijk)−
1

2
[Y i(tij)− ηi(tij, bi)]TW ijΣ

−1W ij[Y i(tij)− ηi(tij, bi)]}+ C,

where C is a constant that does not depend on ω. It can be shown thatG(ω0) = diag(A, . . . ,A),

where

A = I4 +


E(σ11σ11) E(σ12σ12) E(σ13σ13) E(σ14σ14)

...
...

...
...

E(σ41σ41) E(σ42σ42) E(σ43σ43) E(σ44σ44)

 ,

in which σkl and σkl are the (k, l)th component of matrix Σ−1 and Σ, respectively, and the

expectation is taken with respect to the prior distribution of Σ.

The second perturbation is also a single-case perturbation obtained by perturbing the

marginal hazard function as follows:

λm(t|bi, zi, ωmi) = λm0(t) exp{αm1ηi1(t, bi) + . . .+ αm4ηi4(t, bi) + zTi γm + ωmi},

20



where ηik(t, bi) = βk0 + βk1xi1 + . . . + βk6xi6 + βk7t + bik0 + bik1t for k = 1, . . . , 4. In this case,

ω = (ω11, ω21, . . . , ωn1, ωn2)T and ω0 = 0 represents no perturbation. Then the corresponding

perturbed log-posterior is given by

l(ω) =
n∑
i=1

L∑
l=1

M∑
m=1

{δmi[αm1ηi1(t∗mil, bi)+. . .+αm4ηi4(t∗mil, bi)+zTi γm+ωmi]−hmlBmil(ωmi)}+C,

where Bmil(ωim) can be obtained by using zTi γm + ωmi to replace zTi γm in Bmil. Similarly, we

can show that

G(ω0) = diag(g11, g21, . . . , gn1, gn2),

where gmi =
∑L

l=1E(hmlBmil) for m = 1, 2 and i = 1, . . . , n, and E(·) represents the expectation

taken with respect to the distribution of bik and the priors for βk and (hml, γm, αm), in which

βk = (βk0, βk1, . . . , βk6)T and αm = (αm1, . . . , αm4)T .

The third perturbation is to simultaneously perturb the shared random effects bi in both

the longitudinal profile and the marginal hazard functions:

yik(tijk, ωik) = βk0 + βk1xi1 + . . .+ βk6xi6 + ωik(bik0 + bik1tijk) + εijk

∆
= ηik(tijk, bik, ωik) + εijk,

λm(t|bi, zi,ωi) = λm0(t) exp{αm1ηi1(t, bi1, ωi1) + . . .+ αm4ηi4(t, bi4, ωi4) + zTi γm},

where ωi = (ωi1, . . . , ωi4). In this case, ω = (ω1, . . . ,ωn), and ω0 = 1 presents no perturbation.

Then the perturbed log-posterior is

l(ω) = C − 1
2

n∑
i=1

ni∑
j=1

(Y i(tij)− ηi(tij, bi,ωi))TΣ−1(Y i(tij)− ηi(tij, bi,ωi))

+
n∑
i=1

L∑
l=1

M∑
m=1

{δmi(αm1ηi1(t∗mil, bi1,ωi1) + . . .+ αm4ηi4(t∗mil, bi4,ωi4) + zTi γm)− hmlBmil(ωi)},

where ηi(tij, bi,ωi) = (ηi1(tij1, bi1, ωi1), . . ., ηi4(tij4, bi4, ωi4))T , and Bmil(ωi) can be obtained

by using ωik(bik0 + bik1t) to replace bik0 + bik1t in Bmil. Thus, we can shown that G(ω0) =

diag(g11, . . . , g14, . . . , gn1, . . . , gn4), where

gik = ρ0Rkk,0

ni∑
j=1

vTijk(R
0
φk)
−1vijk/(ρ

0
φk − 3) +

L∑
l=1

M∑
m=1

E{hmlBmilα
2
mk(bik0 + bik1t

∗
mil)

2},
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where Rkk,0 is the (k, k)th element of the matrix R0, vijk = (1, tijk)
T , and E(·) represents the

expectation taken with respect to the distribution of bik and the priors for βk and (hml, γm,

αm) for i = 1, . . . , n and k = 1, . . . , 4.

The fourth perturbation is to perturb the prior distributions of all the parameters as follows:

βk ∼ N7(β0
k + ωβ017,H

0
βk/ωβ1), αm ∼ N4(α0

m + ωα014,H
0
αm/ωα1),

Σ−1 ∼Wishart4(ρ0, ω
−1
Σ R

0), Φ−1
k ∼Wishart2(ρ0

k, ω
−1
φ R

0
φk), (20)

hml ∼ Γ(τλ0, ωhτλ1), γm ∼ N6(γ0
m + ωγ016,H

0
γm/ωγ1).

In this case, ω = {ωβ0, ωβ1, ωα0, ωα1, ωγ0, ωγ1, ωh, ωΣ, ωφ}, and ω0 = (0, 1, 0, 1, 0, 1, 1, 1, 1) repre-

sents no perturbation. The perturbed log-posterior is given by

l(ω) = 14 log(ωβ1) + 2M log(ωα1) + 3M log(ωγ1)

−0.5ωβ1

4∑
k=1

(βk − β0
k − ωβ017)T (H0

βk)
−1(βk − β0

k − ωβ017)

−0.5ωα1

M∑
k=1

(αm −α0
m − ωα014)T (H0

αm)−1(αm −α0
m − ωα014)

−0.5ωγ1

M∑
m=1

(γm − γ0
m − ωγ016)T (H0

γm)−1(γm − γ0
m − ωγ016)

−ωhτλ1

M∑
m=1

L∑
l=1

hml +MLτλ0 log(ωh) + 2ρ0 log(ωΣ)

−0.5ωΣtr(R0−1
Σ−1) + (

4∑
k=1

ρ0
k) log(ωφ)− 0.5ωφ

4∑
k=1

tr(R0
φk

−1
Φ−1
k ) + C,

where C is a constant that does not dependent on ω. We can show that

G(ω0) = diag(G0
β,G

0
α,G

0
γ,MLτλ0, 2ρ0,

4∑
k=1

ρ0
k),

whereG0
β = diag(1T7 (

∑4
k=1(H0

βk)
−1)17, 14),G0

α = diag(1T4 (
∑M

m=1(H0
αm)−1)14, 2M)), andG0

γ =

diag(1T6 (
∑4

k=1(H0
γm)−1)16, 3M).

The last perturbation is a simultaneous perturbation of the priors, the sampling distribu-

tions, and the individual observations. Specifically, we first perturb the sampling distributions
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and the individual observations as follows:

yik(tijk, ωi, ωb) = βk0 + βk1xi1 + . . .+ βk6xi6 + ωb(bik0 + bik1tijk) + εijk/ωi

∆
= ηik(tijk, bik, ωb) + εijk/ωi,

,

λm(t|bi, zi, ωλ, ωb) = λm0(t) exp{αm1ηi1(t, bi1, ωb) + . . .+ αm4ηi4(t, bi4, ωb) + zTi γm + ωλ}.

Secondly, we use the same perturbation given in (20) to perturb the priors of βk,αm,γm, hml,Σ
−1

and Φ−1
k . Thirdly, we also introduce a perturbation to a subset of h′mls. The perturbed log-

posterior is given by

l(ω) =
n∑
i=1

ni∑
j=1

{4 log(ωi)− ω2
i

2
(Y i(tij)− ηi(tij, bi, ωb))TΣ−1(Y i(tij)− ηi(tij, bi, ωb))}

+
M∑
m=1

L∑
l=1

n∑
i=1

{δmi(αm1ηi1(t∗mil, bi, ωb) + . . .+ αm4ηi4(t∗mil, bi, ωb) + zTi γm + ωλ)

−
G∑
g=1

ωhghmlBmil(ωλ, ωb)I(l ∈ Tg)}+
M∑
m=1

L∑
l=1

G∑
g=1

dml log(ωhghml)I(l ∈ Tg)

+14 log(ωβ1) + 2M log(ωα1) + 3M log(ωγ1)

−0.5ωβ1

4∑
k=1

(βk − β0
k − ωβ017)T (H0

βk)
−1(βk − β0

k − ωβ017)

−0.5ωα1

M∑
k=1

(αm −α0
m − ωα014)T (H0

αm)−1(αm −α0
m − ωα014)

−0.5ωγ1

M∑
m=1

(γm − γ0
m − ωγ016)T (H0

γm)−1(γm − γ0
m − ωγ016)

−ωhτλ1

M∑
m=1

L∑
l=1

hml +MLτλ0 log(ωh) + 2ρ0 log(ωΣ)

−0.5ωΣtr(R0−1
Σ−1) + (

4∑
k=1

ρ0
k) log(ωφ)− 0.5ωφ

4∑
k=1

tr(R0
φk

−1
Φ−1
k ) + C,

where ηi(tij, bi, ωi, ωb) = (ηi1(tij1, bi1, ωb), . . . , ηi4(tij4, bi4, ωb))
T , Tg ∈ {1, . . . , L} (g = 1, . . . , G)

is an index set and satisfies Tg1
⋂
Tg2 = ∅ for every g1 6= g2 ∈ {1, . . . , G} and T1

⋃
. . .
⋃
TG =

{1, . . . , L}. In this case, ω is given by

ω = (ω1, . . . , ωn, ωb, ωλ, ωh1, . . . , ωhG, ωβ0, ωβ1, ωα0, ωα1, ωγ0, ωγ1, ωh, ωΣ, ωφ),

and ω0 = {1, . . . , 1, 1, 0, 1, 1, . . . , 1, 0, 1, 0, 1, 0, 1, 1, 1, 1} represents no perturbation. Here, we

take L = 250 and G = 5 and T1 = {1, . . . , 50}, T2 = {51, . . . , 100}, T3 = {101, . . . , 150},
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T4 = {151, . . . , 200} and T5 = {201, . . . , 250}. After some calculations, we have

G(ω0) = diag(8n1, . . . , 8nn,W ,G0
β,G

0
α,G

0
γ,MLτλ0, (4ρ0)/2,

4∑
k=1

ρ0
k). (21)

Let Rkk,0 be the (k, k)th element of the matrix R0 and vijk = (1, tijk)
T . In (21), W is given by

W =



w1 w2 v11 . . . v15

w2 w3 v21 . . . v25

v11 v21 ν1 . . . 0

...
...

...
. . .

...

v15 v25 0 . . . ν5


,

in which

w1 =
n∑
i=1

ni∑
j=1

4∑
k=1

ρ0Rkk,0v
T
ijk(R

0
φk)
−1vijk/(ρ

0
φk − 3) +

n∑
i=1

L∑
l=1

M∑
m=1

E{hmlBmilq
2
mi},

w2 =
M∑
m=1

L∑
l=1

n∑
i=1

E{hmlBmilqmi},

w3 =
M∑
m=1

L∑
l=1

n∑
i=1

E{hmlBmil},

v11 =
M∑
m=1

∑
l∈T1

n∑
i=1

E{hmlBmilqmi}, v15 =
M∑
m=1

∑
l∈T5

n∑
i=1

E{hmlBmilqmi},

v21 =
M∑
m=1

∑
l∈T1

n∑
i=1

E{hmlBmil}, v25 =
M∑
m=1

∑
l∈T5

n∑
i=1

E{hmlBmil},

ν1 =
M∑
m=1

∑
l∈T1

dml, ν5 =
M∑
m=1

∑
l∈T5

dml and qmi =
4∑

k=1

αmk(bik0 + bik1t
∗
mil),

and E(·) represents the expectation with respect to the distribution of bik and the priors of all

unknown parameters for i = 1, . . . , n, j = 1, . . . , ni, and k = 1, . . . , 4.
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Figure 1: Index plots of local influence measures (a) vBmax, (c) SIDφ,ej
and (e) gii with p(γm)

D
=

N(γ0
m,H

0
γ), (b) vBmax, (d) SIDφ,ej

and (f) gii with p(γm)
D
= N(12, 0.08I2) for the first simultaneous

perturbation (10).
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(e) (f)

Figure 2: Index plots of local influence measures (a) vBmax, (c) SIDφ,ej
and (e) gii with p(γm)

D
=

N(γ0
m, I2), (b) vBmax, (d) SIDφ,ej

and (f) gii with p(µγ)
D
= N(12, 0.08I2) for the second simultaneous

perturbation.
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Figure 3: Index plots of local influence measures (a) vBmax, (c) SIDφ,ej
and (e) gii with p(γm)

D
=

N(γ0
m, I2), (b) vBmax, (d) SIDφ,ej

and (f) gii with p(µγ)
D
= N(12, 0.08I2) for the second simultaneous

perturbation.
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