Supporting Information

Biochemical and structural analysis of aminoglycoside acetyltransferase Eis from Anabaena variabilis

Rachel E. Pricer,^{*a,b*} Jacob L. Houghton,^{*a,c*} Keith D. Green,^{*a*} Abdelrahman S. Mayhoub,^{*a*£} and Sylvie Garneau-Tsodikova^{**a,b,c*}

^aLife Sciences Institute, ^bChemical Biology Doctoral Program University of Michigan, and ^cDepartment of Medicinal Chemistry in the College of Pharmacy, 210 Washtenaw Ave, Ann Arbor, MI 48109, USA. ^eOn leave from Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt.

Correspondence to: Fax: +1 734-615-5521; Tel: +1 734-615-2736; E-mail: sylviegt@umich.edu.

Fig. S1. Structures of aminoglycosides (AGs) tested in this study. The amine functionalities that could potentially be modified by Eis proteins are highlighted in bold red.

Fig. S2. 15% Coomassie blue-stained SDS-PAGE of purified Eis_Ava.

Fig. S3. Mass spectra of AGs multi-acetylated by Eis_Ava.

Fig. S4. Michaelis-Menten analysis of the Eis_Ava catalyzed acetylation of A. APR, B. KAN, C. NEA, D. NEO, and E. PAR.

Table S1. Proton chemical shifts determined for NEA and 1,2'-di-acetyl-NEA. ^a				
Ring	H position	NEA	1,2'-di-acetyl-NEA	Δppm
Π	1	$2.91-2.88^{b}$ (m) $[2.89]^{d}$	3.70-3.84 (m) [3.77]	0.88
	2 _{ax}	1.33 (ddd (app. q), $J_{2ax,2eq} = J_{2ax,l} = J_{2ax,3} = 12.0 \text{ Hz})^{\circ}$	1.72 (ddd (app. q), $J_{2ax,2eq} = J_{2ax,l} = J_{2ax,3} = 13.0$ Hz)	0.39
	2_{eq}	2.08 (ddd (app. dt), $J_{2eq,2ax} = 12.0 \text{ Hz}$, $J_{2eq,1} = J_{2eq,3} = 4.0 \text{ Hz}$)	2.25 (ddd (app. dt), $J_{2eq,2ax} = 13.0 \text{ Hz}$, $J_{2eq,I} = J_{2eq,3} = 4.1 \text{ Hz}$)	0.17
	3	2.96^{b} (ddd, $J_{3,2eq} = 4.0 \text{ Hz}$, $J_{3,2ax} = 12.0 \text{ Hz}$, $J_{3,4} = 9.5 \text{ Hz}$)	3.33-3.41 (m) [3.38]	0.42
	4	3.35° (dd, (app. q) $J_{4',3'} = J_{4',5'} = 9.5$)	3.91-3.79 (m) [3.82]	0.45
	5	3.59-3.55 (m) [3.57]	3.66-3.58 (m) [3.62]	0.05
	6	3.29-3.23° (m) [3.26]	3.51-3.37 (m) [3.42]	0.16
Ι	1'	5.42 (d, $J_{I',2'} = 4.0$ Hz)	5.76 (d, $J_{1',2'} = 3.8$ Hz)	0.34
	2'	2.87 (dd, $J_{2',1'} = 4.0$ Hz, $J_{2',3'} = 10.5$ Hz)	4.01-3.93 (m) [3.98]	1.11
	3'	3.63 (dd (app. t), $J_{3',4'} = 9.5$ Hz, $J_{3',2'} = 10.5$ Hz)	3.92-3.85 (m) [3.89]	0.26
	4'	3.35 (dd, (app. q) $J_{4'3'} = J_{4'5'} = 9.5$)	3.51-3.37 (m) [3.44]	0.09
	5'	3.91 (ddd, $J_{5',4'} = 9.5$ Hz, $J_{5',6'a} = 7.5$ Hz, $J_{5',6'b} = 3.0$ Hz)	4.01-3.93 (m) [3.96]	0.05
	6'a	3.04 (dd, $J_{6'a,6'b} = 14.0$ Hz, $J_{6'a,5'} = 7.5$ Hz)	3.22 (dd, $J_{6'a,6'b} = 13.0$ Hz, $J_{6'a,5'} = 7.5$ Hz)	0.18
	6'b	3.29-3.23 (m) [3.25]	3.51-3.37 (m) [3.49]	0.24
Acetyl	N <u>H</u> -2'	x	$8.30 (d, J_{NH,2'} = 8.0 Hz)$	
	N <u>H</u> -1	x	8.24-8.14 (m) [8.20]	
	CH ₃ C=O on 2'	×	2.05 (s)	
	CH ₃ C=O on 1	×	1.97 (s)	
The chamical shift were established based on ¹ IL STOCSY SCOSY and SUSOC NMD (500 MHz) ^b Could be enclosed exciting of the 2 decousterentemics (DOS)				

"The chemical shift were established based on ¹H, zTOCSY, gCOSY, and gHSQC NMR (500 MHz). ^bCould be analogous position of the 2-deoxystreptamine (DOS) ring. "Multiplicity and *J* are given in (). ^bThe numbers in [] were determined from gCOSY and/or zTOCSY. ^cCould be analogous position of the DOS ring. ×Indicates that the acetyl moiety is not present in the molecule.

Fig. S5. ¹H NMR of NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz). The full spectrum is shown in panel **A** and the expansions in panels **B-D**.

Fig. S6. gCOSY of NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz).

Fig. S7. zTOCSY of NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz).

Fig. S8. gHSQC of NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz).

Fig. S9. ¹H NMR of 1,2'-di-acetyl-NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz). The full spectrum is shown in panel **A** and the expansions in panels **B-D**.

Fig. S10. gCOSY of 1,2'-di-acetyl-NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz).

Fig. S11. zTOCSY of 1,2'-di-acetyl-NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz).

Fig. S12. gHSQC of 1,2'-di-acetyl-NEA in 1.2:8.8/D₂O:H₂O at pH 7.5 (500 MHz).