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ABSTRACT Consider a sequence of N X N random non-
negative matrices in which each element depends on a vector
u of parameters. The nth partial product is the random matrix
formed by multiplying, from right to left, the first n of these
random matrices in order. Under certain conditions, the ele-
ments of the nth partial product gow asymptoticall expo-
nentially as n increases, and the logarithms of the discrete
long-run growth rates are convex functions of u. These condi-
tions are met by some models in statistical mechanics and
demography. Consequently, the Helmholtz free energy is con-
cave and the population growth rate is convex in these
models.

In statistical mechanics, a one-dimensional Ising model (1) of
randomly composed heteropolymers, which has been proposed
to describe DNA, takes the form of products of random matrices
(2). We establish the concavity of the Helmholtz free energy,
and hence thermodynamic stability, for generalizations of this
model. The methods apply to higher-dimensional random Ising
models as well (3).

In demography, models of age-structured populations with
Markovian birth and death rates also take the form of products
of random matrices (4-8). We establish the convexity of the
natural measures of population growth rate in these models.

These results follow from observations about products of
random matrices that follow readily from known theorems.

General results

LetR =(-o,+o);R+=[0,co);R++=(0,o);Z=1,2,. ..;
RA.,N = the set of N X N matrices with elements in R , for N
in Z; Rq = the set of q-tuples with elements in R, for q in Z.

Let U be an open convex set in Rq. We sayf:Rq R is con-
vex if for all u and v in U, for all h in [0, 1], f(hu + (1 - h)v)
< hf(u) + (1 - h)f(v). A function f that takes only positive
values is log convex if log f is convex. Let F be the class of all
log convex functions, together with the function identically zero
in U.

Let A be an arbitrary nonempty index set. We shall think of
an element a of A as one possible state of a stochastic process
at one point in discrete time. Let B be the set of all se-
quences

b = (al, a2,. a,.. .), an in A for all n in Z.
We shall think of each b as a sample path of a discrete-time
stochastic process.

Let X:A X U -- RN,,N, and let Xqy(a,u) be the Ij element of
the matrix X(a,u). Let Y:Z X B X U -- RNNbe defined, for n
in Z, by
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Y(n,b,u) = X(a., u)X(a.-I, u) ... X(a,, u),

in which ordinary matrix multiplication is intended on the right.
The matrix Y(n,bu) has ij element Yq(nbu).
Assume B has a family of measurable subsets on which a

probability measure is defined. Expectations Eb over all sample
paths b are to be computed with respect to this probability
measure.

For any matrix m, we let IIm 11 = max, Xj Imij 1. We take log
0 = -cX and abbreviate l to limn.
THEOREM 1. For every a in A and every ij = 1, . . ., N, let

Xij(a,.):U aR+ be a function in the class F. Then for every p
in R + +, whenever the indicated expectations and limits exist,
F also contains the following R + -valued functions with do-
main U:

(i) YP(n,b,.) and IIY(n,b,.)IIP;
(ii) Eb(Ytj(nb,.)) and Eb( IIY(n,b,.) lP);

and the following functions are convex:

(iii) log Xp(.) = llmn n-1 Eb[log(IIY(n,b,.)JIP)]
and limn n-1 Eb[log Yj(n,b,.)];

(iv) log ,p(. ) = limn nn log Eb[IIY(n,b,.)IIP]
and limn n-1 log Eb[YP(n,b,.)].

The proof requires these facts:
LEMMA [Artin (9), as stated by Marshall and Olkin (10)]. Let

U be an open convex set in Rq and let (c, d) be an interval in
R. Let 4r:U X (c, d) a R+ satisfy

(i) 0(u,t) is Borel-measurable in t for each fixed u;

(ii) log 0(u,t) is convex in u for each fixed t.

If v is a measure on the Borel subsets of (c, d) such that 0(u,.)
is v-integrable for each u in U, then log fdb(ut)dv(t) is convex
on U.
LEMMA [Kingman (11)]. F is closed under addition, multi-

plication and raising to any positive power. If, for each n, fn
belongs to F, then so does f = lim sup fn.

Proof of Theorem 1: Because matrix multiplication entails
only addition and multiplication, Kingman's lemma implies
immediately that F contains i and that, in ill, the functions to
which Eb is applied are convex. Artin's lemma guarantees that
the expectations in ii belong to F and that the functions in iv
are convex. 3
Over the range of values of p for which the quantities in

Theorem I iii and iv exist, these quantities are also convex
functions of p, for fixed u.

Theorems 2 and 3 below assure the existence of the limits in
iii and iv under conditions that are satisfied in scientific ap-
plications.
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Define a setM of matrices in RIN,N to be an ergodic set (12)
if there is a C in Z and a constant p in (0,1) such that every
product of G matrices, with or without repetitions, fromM is
strictly positive and if, for each matrix m in M, min+(m)/
max(m) > p, in which min+(m) is the smallest nonzero element
of m and max(m) is the largest element of m.
No matrix in an ergodic set can have a row or column that

is entirely zero.
THEOREM 2 [Furstenberg and Kesten (ref. 2, p. 462)]. For

each u in U, let JX(a,u); a in Al be an ergodic set. Let the
probability measure on B be such that, for all u, (X(an,u), n in
Z) is a stationary, metrically transitive stochastic process and
Eb (max[0, log Xij(al,u)]) < Xo for ij = 1, . . . , N. Then for every
p in R + + there exists a finite positive constant Xp(u) such
that, for all ij = 1, ... N, with probability one-i.e., for al-
most all sample paths b-

log Xp(u) = limn n-1 log[Yi5(n,b,u)]
= limn n1 Eb(log[YP(n,b,u)]).

In this statement of the theorem, the replacement of the
original condition Al of Furstenberg and Kesten (2) by Hajnal's
concept of ergodic set (12) goes part way toward making ex-
plicit some remarks of Kingman (ref. 13, p. 892). Furstenberg
and Kesten (2) prove Theorem 2 for p = 1.
When p = 1, we abbreviate M,(.) to ,u(.) and X1(.) to X(.).
COROLLARY 1. Under the combined assumptions of The-

orems 1 and 2, log Xp(.) is convex, for all p > 0.
David Ruelle (personal communication) pointed out that

Corollary 6.23 of ref. 14 gives a variational formula for log X,
from which also convexity follows.
THEOREM 3. Let AO = I 1, . . ., si, and let A = AS = 1(k,l); k,l

in Ao). Let P = (pkd) be a fixed s X s aperiodic irreducible sto-
chastic matrix (Z:lpk1 = 1). For each u in U, let XU = {x(kl,u);
(k,l) in A) be an ergodic set, which contains s2 matrices in RN+jN.
Let

P[X(an+1,u) = x(k,l,u) I X(anu) = x(g,h,u)] = Pklbhk
for all g, h, k, and 1 in Ao, where bhk = 1 if h = k, 5hk = 0 if h
6 k. Then there exists Flu) in R++ such that, for all ij = 1,

log AW(u) = limn n-1 log Eb[Yij(n,b,u)]
= limn n-1 log Eb[IIY(n,b,u)II].

Proof. The factors X(aj,u), as in A, i = 1,... , n, are deter-
mined by successive overlapping pairs of states of the Markov
chain with transition matrix P. If P specifies an aperiodic er-
godic Markov chain, as we assume, then the "expanded" process
on successive pairs of states is also an aperiodic ergodic Markov
chain (ref. 15, pp. 140-141). Following the line of argument
in Corollary 1 of ref. 6 (p. 466), which concerns products of
matrices indexed by successive single states of a Markov chain,
there exists a primitive matrix m(u) that has a simple positive
eigenvalue of maximum modulus (by the Perron-Frobenius
theorem), and that eigenvalue is ,u(u). 3
COROLLARY 2. Under the combined assumptions of The-

orems 1 and 3, log IA(u) and log Xp(u) are convex in u.
It suffices to note that the assumptions of Theorem 3 imply

those of Theorem 2. 0
Suppose the index set A contains only a single element and

Xu contains only a single matrix x(u). The stochastic process
degenerates to Y(n,bu) = [x(u)]" for every n. In Theorems 1,
2, and 3, X(u) = Iu(u) are both equal to the spectral radius or
Perron-Frobenius root of x(u). The convexity asserted in
Corollary 2 is then identical to that in the theorem of Kingman
(11).

THEOREM 4. Let M = jx(k); k = 1, . . ., s) be a finite ergodic
set. Let (X(an), n in Z) be a sequence of matrices from M,
chosen independently and identically distributed, with

P[X(an) = x(k)] = Trk, k = 1,..., s,

and 2;k Wk = 1. With
b= (al,,a2.,a,.)

Y(n,b) = X(an) ... X(a,), and
= limn n-l log Eb[IIY(n,b)III
= limn n-1 log Eb[Yij(n,b)],

we have that g is a convex function of the N-vector with ith
element equal to 21=1 7rk xii(k). [The elements of this vector
are precisely those of the main diagonal of the averaged ma-
trix x* = 2k 7rkX(k).I

Proof. ,u is the spectral radius of x* (ref. 6, p. 467). The
spectral radius of any square nonnegative matrix is a convex
function of the main diagonal of the matrix (16,17). Combining
these two results gives Theorem 4. 0

I have verified the convexity asserted in Corollary 2 and
Theorem 4 in numerical examples. The computation of log X(.),
which requires the solution of an integral equation followed by
an integration, is outlined in ref. 7 and described in greater
detail in refs. 5 and 6. The computation of !u(.), which requires
finding the spectral radius of a nonnegative matrix, uses the
power method. Both computer programs have been confirmed
by using examples (8) in which X and A,. are known analyti-
cally.

Further examples show that neither X nor 1A is necessarily a
convex function of xi,(k) (all else held constant) when (X(an),
n in Z) is Markovian but not independently and identically
distributed. However, the examples studied so far are com-
patible with the conjecture that the analog of Theorem 4 holds
for X = limn n-1 Eb[log Yq(nb)], as well as for ,u, even though,
in these examples, X < u.

Ising chains in random magnetic fields
We now establish the concavity of the mean free energy per
site as a function of parameters in a one-dimensional Ising
model of a randomly composed heteropolymer. Concavity
assures thermodynamic stability (ref. 18, pp. 72-75; ref. 19).
Because products of random matrices have also been used to
calculate the mean free energy per site in a two-dimensional
Ising model with a Hamiltonian containing random coefficients
(3), the approach and result presented here only for one-di-.
mensional lattices can be extended readily to higher dimensions.
Convexity properties of systems of spins on a lattice in which
certain randomly chosen sites are vacant (20) do not appear to
contain the results that follow.

For concreteness, consider a long polymer with two types of
monomeric units, 1 and 2. For example, in double-stranded
DNA, type 1 might represent an adenine-thymine base pair and
type 2 a guanine-cytosine base pair (21, 22). Assume this poly-
mer is in a very dilute solution, so that interactions between
polymers can be neglected. Assume each molecule has free
ends-i.e., ignore effects at the end of a molecule. In each
polymer, index the units in order from right to left 1, 2, .... Let
en = +1 if unit n is of type 1, en = -1 if unit n is of type 2. Thus
if unit n is of type i, En = (-1)'+'. As in ref. 21 (pp. 883-884),
for n in Z, let pq > 0 be the conditional probability that
monomer n + 1 is of type J, given that monomer n is of type
i, in which i = 1,2 andj = 1,2.

Assume that each monomer, whether of type 1 or type 2, may
be in one of two states: an unbonded state (a coil state in DNA)
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associated with a spin sun = +1 or a bonded state (a helical state
in DNA) associated with a spin An = -1. [This use of AU which
is conventional for the spin variables should cause no confusion
with the use of Ap(.) for the limits in Theorem 1 iv, because we
will not use the latter notation in this section.]
We emphasize that (en, n e Z) is a Markovian stochastic

process that specifies the chemical composition of a polymer,
whereas (An, n e Z) is a sequence of spin variables that specifies
the configuration of a polymer.

Suppose that the partition function Zn of the first n mono-
mers in the polymer contains no more than nearest neighbor
interactions. (Zn is distinct from the set Z of positive integers.)
Assume that the coupling between the monomeric units at
positions m and m + 1, m e Z, is described by a real number
Jm = J(im+ 1Em+ 1, um, em). Suppose that the function J that
maps the 16 possible arguments (gm+,, Em+1, Am, Em) = (W1,
±1, +1, ±1) into the real numbers does not depend directly on
the position m-i.e., J is translation invariant. J may be written
as a polynomial with coefficients independent of m in which
the variables Amm+1, Em+1, Ams, Em appear with exponent 0 or
1 and the terms are of degree at most 4. Then (for n > 1)

n-1
Zn=AL(t)) exp:E Jm)Xm=l

in which the outer sum is over the set JA(n)j of all possible spin
n-tuples A(n) = (An, ..., ,UA) and l-1 is the product of
Boltzmann's constant and absolute temperature T.
We rewrite Zn as a product of random matrices, which de-

pend on the types of successive overlapping pairs of monomeric
units, by conditioning on the spin of the nth monomer. For n
> 1, express 2fIA(n)l as ZI(1,A(n-1M)) + 2f(-1,A(n-j))j and corre-
spondingly Zn as un + vn. Then Z.+ I = Un+ 1 + vn+ 1, in
which

n
un 1 = Et(,,+ ,,~=.l=i(n-l)) exp 1 f Jm

m=l

+ Ef(;t,,+l1,t,,=-1,(n-1))j exp[1 E JmJm=l
= exp[U3J(lEn + 1,lsEnn)IUn + exp[flJ(l1En+ 1,EslEn )]Vn,

and similarly
on+1 = exp[BlJ(-o1,En+11,oEn)]un

+ exp[flJ(-1len+ i,-lEn)]Vn.
Let A = $al,a2J be an index set with as corresponding to a
monomeric unit of type i, and let (ajaj) indicate that a unit of
type i at some position m on the right is immediately followed
at position m + 1 on the left by a unit of type J. Let

Y(n) =Un

x(aj,aj) =
|explBJ(M,-l)J+l1,(-1)1+1)] exp[ftJ(M,-l)J+1,-M,-V)+1) l

|xp[flJ(-1,(-1)J+1,M,-1)1+1)] explflJ(-Ml(-l)J+1,- l,(-l+1)]

P[X(n + 1) = x(at,aj)IX(n) = x(ag,ah)]
= Pij bh, gshij = 1,2.

For any fixed finite values of the parameters 13 and J(+1, 41,
b1, ±1), the elements of x(a1,a1) are all positive, so M =
fx(aj,aj); (aj,aj) e A21is an ergodic set. Then Y(n + 1) = X(n
+ 1)Y(n),Z.= Yj(n) + Y2(n)=un + v.,andthemeanfree
energyf per monomer is, with probability 1, f = -13- limo
n 1 log Z. Thus, from Corollary 1, over an open convex region
of the parameters J(41, +1, I1, I1), f is a concave function
jointly of these parameters, when temperature T is fixed. From

Corollary 1 in conjunction with ref. 18, p. 77, when the other
parameters are held fixed, f is a concave function of T over any
fixed finite interval of positive values of T.
The model of Morgenstern et al. (1) is the special case in

which successive monomeric units are independently and
identically distributed, PQ2 = c, i = 1,2, for c in (0,1), and (except
for the nth monomeric unit, which has a negligible effect on
f) J has the special form

J($m+i, Em+1, jtm, Em) = hitLm + h2JimEm + h3/.mImLm+ 1,

for some constants hi, h2, h3.
According to ref. 1, averaging the logarithm of the partition

function E[log Zn] is appropriate for "quenched random dis-
order," in which the local chemical composition of a polymer
is not altered in time by thermal fluctuations in the solution.
Computing log E[Z ] corresponds to "fully annealed random
disorder," in which the local chemical composition in a polymer
is not fixed. Our Corollary 2 shows that, under the assumptions
of this section, lima n-1 log E[Zn] is a convex function of 1 and
J(+1, 1l, 11, 11) jointly.

If this analysis were repeated for heteropolymers randomly
composed from t > 2 types of monomeric units, the ergodic set
M would contain t2 transfer matrices instead of 4. If, instead
of two possible values of spin, S possible values of spin were
allowed, each transfer matrix would be of order S X S. The
restriction to nearest-neighbor interactions can be relaxed to
interactions with finite range (ref. 23, pp. 134-135). The same
conclusions hold for these extensions.

Age-structured populations with Markovian vital rates
Models that satisfy the assumptions of Corollary 2 have been
proposed to describe large, closed, unisexual age-structured
populations in which the birth and death rates (or vital rates)
at any time depend jointly and stochastically on the rates at an
earlier time (6, 7).

Let us interpret Corollary 2 first for a population with vital
rates, contained in a matrix x(u) in RN+,N, that are constant in
time, but depend on a parameter u. Then log u(u) = log X(u)
= r(u) is known as the Malthusian parameter or the intrinsic
rate of natural increase of the population. All elements xi1(u)
of the "Leslie" matrix x(u) are 0 except possibly for those x1(u)
in the first row, which specify the effective birth rate of indi-
viduals in the jth age group, and those xl+ ij(u) below the main
diagonal, which specify the proportion of individuals in age
group j at time n -1 who survive to age group j + 1 at time n.
At least XIN(u) and X1K(u), in which K is relatively prime to
N, and all xy+ Ij(u) on the subdiagonal are assumed positive
to guarantee that x(u) is primitive.
We now show that the positive elements of x(u) are log

convex functions of parameters, indicated generically by u, that
have natural demographic interpretations. The probability
4s+ 1/1s that an individual of exact age (i.e., in continuous time
R+) s will survive to exact age s + 1 is commonly expressed in
terms of an underlying continuous-time force of mortality m(s)
at exact age s as

Is+ i/is = expf.-J' m(s')ds
which is a log-linear function of the force of mortality m(.). [The
conventional actuarial notation u(.) for this force of mortality
would cause too much confusion here.] If the individuals in the
jth age group are a mixture of individuals with exact ages s in
the interval (j - 1,j], then xj+ 1,j (u) is the same mixture of
survival probabilities 8+ 1/14, and hence is also a log-linear
function of the force of mortality u = m(.) at any set of exact
ages. (Here we extend u from a q-tuple to a continuous function
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over an interval of exact ages.) In practice, x+ ,j(u) is com-
puted by assuming a mixture of survival probabilities that is
invariant in time.
The effective birth rates x1j(u) in the first row of x(u) are a

mixture of age-specific fertility rates f(s) at exact age s. The
mixing distribution is assumed constant in time. The mixture
depends on the survival, which is a log-linear function of
mortality, of individuals in the interval (0,1]. A parameteriza-
tion of age-specific fertility rates due to Coale and Trussell (ref.
24, p. 190) for a human female population is

f(s) = G(s)n(s)ewv(s),
in which G(s) is the cumulative proportion ever married by
exact age s, n(s) is "natural fertility," v(s) is a characteristic
pattern of departure from natural fertility, and w is the extent
of that departure. In this parameterization, G(.), n(.) and v(.)
are given functions of exact age and f(.) is log convex in w. Thus
x1j(u) is log convex in u = (w,m(.)). Other parameterizations
of age-specific fertility, for example, as the derivative of a
Gompertz distribution function, have also been found useful
(25).

Having suggested that a log convex parameterization of x(u)
arises naturally in this demographic model, we now interpret
the conclusions of Corollary 2, continuing to assume for the
moment that vital rates are constant in time. Suppose that xy1(u)
= btq(1 + ki,)u, -1 <klj < x, u 2 0. We refer to the elements
xq(0) = bij as the baseline vital rates. In x(1), the baseline vital
rate bij has been multiplied by a factor 1 + ki. In x(2), those
changed rates have again been multiplied by the same factor.
An immediate consequence of the theorem of Kingman (11)
is r(2) - r(l) 2 r(l) - r(0). For example, if a 10% decrease in
an age-specific birth rate lowered r in a hypothetical population
from 0.03 to 0.02, then a further 10% decrease in the same birth
rate, all else held constant, could not lower r beyond 0.01.
Similarly, if a 20% improvement in the survival of children
increased r in a hypothetical population from 0.01 to 0.02, then
a further 20% improvement in the same survival proportions,
all else held constant, would raise r to at least 0.03. These results
appear to be previously unknown in the classical theory of stable
populations.

In age-structured populations with Markovian vital rates, log.
,g(u) and log X(u) are not, in general, equal, and there is no
unique natural analog of the Malthusian parameter (26). The
results just described for r(u) hold for each of log g(u) and log
X(u).
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