SUPPLEMENTAL INFORMATION

Genetic and biochemical characterizations of enzymes involved in *Streptococcus pneumoniae* serotype 2 capsule synthesis demonstrate that Cps2T (WchF) catalyzes the committed step by addition of β1-4 rhamnose, the second sugar residue in the repeat unit

David B.A. James and Janet Yother[#]

Department of Microbiology, University of Alabama at Birmingham

Birmingham, Alabama 35294

Running title: Cps2T (WchF) rhamnosyltransferase activity

[#]To whom correspondence should be addressed: Janet Yother, Department of Microbiology, 845 19th St. S., BBRB 661/12, University of Alabama at Birmingham, Birmingham, AL 35294. Tel.: 205-934-9531; Fax: 205-975-6715; E-mail: jyother@uab.edu

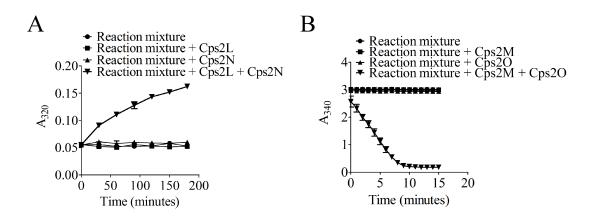
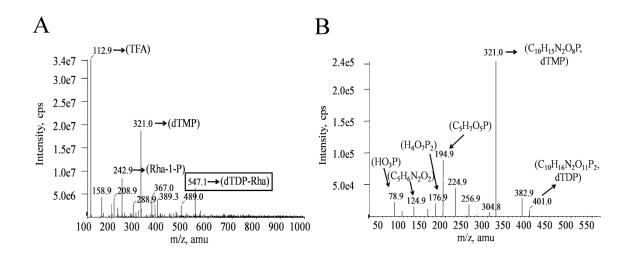



FIG S1. Kinetic assays for Cps2N and Cps2O. Assays were performed as described in the Materials and Methods. The reaction mixture for Cps2N activity (A) contained dTTP, Glc-1-P, NAD^+ , and the indicated enzyme(s). Activity was measured as the generation of NADH. The reaction mixture for Cps2O activity (B) contained the Cps2N product, NADH, and the indicated enzyme(s). Activity was measured as the oxidation of NADH. Data points represent means \pm standard errors from three reactions.

FIG S2. ESI-MS/MS of HPLC purified Cps2O product. One µl of purified dTDP-Rha (approximately 1 mM) was injected by direct infusion into a triple quadruple mass spectrometer operated under the negative electrospray ionization mode. (A) Precursor ion spectra of the purified Cps2O product (ESI-MS). Ion 547.1 corresponds to dTDP-Rha . (B) The product ion spectra (ESI-MS/MS) of ion 547.1. Product ions indicated are consistent with calculated fragments of dTDP-Rha. Ion intensity is presented as counts per second (cps).

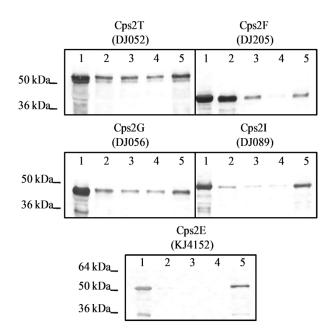


FIG S3. Cps2E, Cps2T, Cps2F, Cps2G, and Cps2I membrane association in *E. coli*. Membrane fractions (3 μ g of total protein) were sequentially washed with 30 μ l of 100 mM Na₂CO₃ (pH 11.5). Lanes: 1, 3 μ g of total membrane protein from the indicated strains; 2, first wash with 100 mM Na₂CO₃ (the entire 30 μ l was loaded into the gel); 3 and 4, second and third washes with 100 mM Na₂CO₃, respectively; 5, remaining proteins associated with the membrane. Cps2T, Cps2F, Cps2G, and Cps2I blots were probed with α -Tetra-His; the Cps2E blot was probed with α -Cps2E.

Strain(s) or	Properties ^a		
plasmid(s)			
E. coli strains			
BL21-AI	$F ompT hsdSB(r_B m_B) gal dcm araB::T7 RNAP-tetA$		
DB11	met thi gal hasdR nal rif		
DJ005	BL21-AI (pDJ005); full length Cps2I; Ap ^R		
DJ009	BL21-AI (pDJ009); full length Cps2T; Ap ^R		
DJ011	BL21-AI (pDJ011); full length Cps2G; Ap ^R		
DJ014	BL21-AI (pDJ014); full length Cps2M with N-terminal-His ₆ ; Ap		
DJ015	BL21-AI (pDJ015); full length Cps2N with N-terminal-His ₆ ; Ap ^R		
DJ016	BL21-AI (pDJ016); full length Cps2O with N-terminal-His ₆ ; Ap ^R		
DJ017	BL21-AI (pDJ017); full length Cps2L with N-terminal-His ₆ ; Ap		
DJ052	BL21-AI (pDJ052); full length Cps2T with N-terminal-His ₆ ; Ap ^R		
DJ056	BL21-AI (pDJ056); full length Cps2G with N-terminal-His ₆ ; Ap ^R		
DJ078	DB11(pDJ078); <i>cps2T</i> deletion construct; Em ^R		
DJ086	DB11(pDJ086); <i>cps2F</i> deletion construct; Em ^R		
DJ089	BL21-AI (pDJ089); full length Cps2I with N-terminal-His ₆ ; Ap ^R		
DJ131	DB11(pDJ131); cps2G deletion construct; Em ^R		
DJ184	DB11(pDJ184); <i>cps2I</i> deletion construct; Em ^R		
DJ192	DB11(pDJ192); $\Delta cps2T$ repair construct; Em ^R		
DJ204	BL21-AI (pDJ204); full length Cps2F, replaced GTG start with ATG; Ap ^R		
DJ205	BL21-AI (pDJ205); full length Cps2F, replaced GTG start with ATG, N-terminal-His ₆ ; Ap ^R		
KJ4152	BL21-AI (pKJ4152); full length Cps2E; Ap ^R		
RC124	BL21-AI (pET-20b); Ap ^R		
Plasmids			
pCR TOPO 2.1	PCR cloning vector; $Ap^{R}Km^{R}$		
pDL276	<i>aphA-3</i> containing vector; Km ^R		
pDJ005	pET-20b/ <i>cps21</i> amplified from D39 using primers I7/I8		
pDJ009	pET-20b/ <i>cps2T</i> amplified from D39 using primers T13/T14		
pDJ011	pET-20b/cps2G amplified from D39 using primers G10/G11		
pDJ014	pET-16b/cps2M amplified from D39 using primers M4/M5		
pDJ015	pET-16b/cps2N amplified from D39 using primers N4/N5		
pDJ016	pET-16b/ <i>cps2O</i> amplified from D39 using primers O3/O4		
pDJ017	pET-16b/ <i>cps2L</i> amplified from D39 using primers L6/L7		
pDJ052	pET-16b/cps2T amplified from D39 using primers T13/T14		
pDJ056	pET-16b/cps2G amplified from D39 using primers G10/G11		
pDJ078	pJY4164 containing <i>cps2E</i> (amplified from D39 using primers E54/E55), <i>aphA-3</i> (amplified from pSF151		
· ·	using primers DJ-01/DJ-02), and <i>cps2F</i> (amplified from D39 using primer T12/F12). Used for <i>cps2T</i> deletion		
pDJ086	pJY4164 containing <i>cps2T</i> (amplified from D39 using primers T10/T11), <i>aphA-3</i> (amplified from pSF151		
-	using primers DJ-01/DJ-02), and <i>cps2G</i> (amplified from D39 using primers F7/G8). Used for <i>cps2F</i> deletion		

References or source

Invitrogen (3) This study (1)

Invitrogen (2) This study This study

This study

This study

This study

This study

This study

This study

This study

Novagen

Novagen

This study

(5)

(4)

TABLE S1. Additional strains and plasmids used in this study

pDJ204pET-20b/cps2F amplified from D39 using primers F10/F12. GTG start codon changed to ATG.pDJ205pET-16b/cps2F amplified from D39 using primers F10/F12. GTG start codon changed to ATG.pET16bProtein expression vector, Ap^RpET20bProtein expression vector, Ap^RpJY4164S. pneumoniae suicide vector; Em^RpKJ4152pET-20b/cps2E amplified from D39 using primers E8/E11.pSF151Streptococcal shuttle vector, derivative of pDL276

pJY4164/cps2ETF amplified from D39 using primers E8/F12. Used to repair $\Delta cps2T$ mutants.

^{*a*}Km^R, kanamycin resistant; Ap^R, ampicillin resistant; Em^R, erythromycin resistant.

pET-16b/cps2I amplified from D39 using primers I6/J8

cps2G deletion.

cps21 deletion.

pDJ089

pDJ131

pDJ184

pDJ192

pJY4164 containing cps2F (amplified from D39 using primers F8/F9), aphA-3 (amplified from pSF151 using

pJY4164 containing cps2H (amplified from D39 using primers H8/F9), aphA-3 (amplified from pSF151 using

primers DJ-01/DJ-02), and cps2H (amplified from D39 chromosomal DNA using primer G9/H7). Used for

primers DJ-01/DJ-02), and cps2J (amplified from D39 chromosomal DNA using primer I9/J9). Used for

TABLE S2. Primers used in this study

Primer ^a	Sequence ^b	Description ^c		
E8 (+)	<i>catATG</i> AATGGAAAAACAGTAAAGTC <i>cps2E</i> ^{5046–5068}			
E11 (-)	ctcgagCTACTTCGCTCCATCTCTC cps2E ^{6414–6395}			
E54 (+)	gcgcggtaccATGAATGGAAAAACAGTAAAGTCTTC cps2E ⁵⁰⁴⁶⁻⁵⁰⁷¹			
E55 (-)	gcgcggccgcCTACTTCGCTCCATCTCTCATAAATAC	<i>cps2E</i> ⁶⁴¹³⁻⁶³⁸⁴		
F7 (+)	gcgcctcgagGTGTGGTGCAAGTAATCGGTG	<i>cps2F</i> ⁸⁵²⁹⁻⁸⁵⁴⁹		
F8 (+)	gcgcggtaccgTGAGTAACAAGCAAATTGCGATTATG	cps2F ⁷⁶²²⁻⁷⁶⁴⁸		
F9 (-)	gcgcggccgcCTAAATAAACATTAACTCACCGATTACTTGC	cps2F ⁸⁵⁶⁶⁻⁸⁵³⁶		
F10 (+)	cataTGAGTAACAAGCAAATTGCGATT	<i>cps2F</i> ⁷⁶²³⁻⁷⁶⁴⁸		
F12 (-)	gcgcggatccCTAAATAAACATTAACTCACCGATTACTTGC cps2F ⁸⁵			
G8 (-)	gcgcggatccCTATTTACCGTTTTCAATATATACCCC cps2G ⁹⁶²⁸⁻⁹⁶⁰²			
G9 (+)	gcgcctcgagGGGGTATATATTGAAAACGGTAAATAG	$cps2G^{9602-9628}$		
G10 (+)	catATGAAAATTAATTTTATCCTTCCATTTAAG	<i>cps2G</i> ⁸⁵⁸²⁻⁸⁶¹¹		
G11 (-)	gaattcCTATTTACCGTTTTCAATATATACCCC	$cps2G^{9628-9602}$		
H7 (-)	gcgcggatccTTATTTTTCTTGCTTAGTCAATCTCATTC	<i>cps2H</i> ¹⁰⁸³²⁻¹⁰⁸⁰⁴		
H8 (-)	gcgcggccgcTTATTTTTCTTGCTTAGTCAATCTCATTC	<i>cps2H</i> ¹⁰⁸³²⁻¹⁰⁸⁰⁴		
H9 (+)	gcgcggtaccATGCTCTCTATATACAGGAAATGGTG	<i>cps2H</i> ⁹⁶⁶⁹⁻⁹⁶⁹⁶		
I6 (+)	ctcgagATGACAAAAAGTATCTTATATTTTTTATCTACATC	<i>cps21</i> ¹⁰⁹⁶²⁻¹⁰⁹⁸⁵		
I7 (+)	catATGACAAAAAGTATCTTATATTTTTTATCTACATC	<i>cps2I</i> ¹⁰⁹⁶²⁻¹⁰⁹⁹⁶		
I8 (-)	gaattcTCAATTTTCTAGTTCCTTATATAGTTGCATG	cps2I ¹²¹¹⁹⁻¹²⁰⁸⁹		
I9 (+)	gcgcctcgagGATAAAAATAATGCCATGCAGATCATG	<i>cps2I</i> ¹²⁰⁶⁶⁻¹²⁰⁸³		
J8 (-)	ggatccTCAATTTTCTAGTTCCTTATATAGTTGCATG	<i>cps2J</i> ¹²¹¹⁷⁻¹²⁰⁸⁸		
J9 (-)	gcgcggatccTTATGTTAGAAACTTTTTTAATTCACCAATAATAC	<i>cps2J</i> ¹³⁵²⁵⁻¹³⁴⁹¹		
L6 (+)	catATGAAAGGTATTATTCTTGCGGGTG	cps2L ¹⁵⁵¹⁰⁻¹⁵⁵³⁴		
L7 (-)	gctaageCTAGACTTCTCCAATCAAACGGAGC	<i>cps2L</i> ¹⁶³⁸⁹⁻¹⁶³⁵⁹		
M4 (+)	catATGACAGATAATTTTTTCGGAAAAATAC	<i>cps2M</i> ¹⁶³⁸⁰⁻¹⁶⁴⁰⁷		
M5 (-)	ggatccTTACAAATCTTCTTTTTCAAAGGTTTTAC	<i>cps2M</i> ¹⁶⁹⁷³⁻¹⁶⁹⁴⁴		
N4 (+)	catATGACTGAATACAAAAATATTATCGTGAC	cps2N ¹⁶⁹⁸⁵⁻¹⁷⁰¹⁴		
N5 (-)	ggatccTTATACTGTAATAATCTCCTGAGTCTTAGC	$cps2N^{18035-18006}$		
03 (-)	ctcgagTTATCTCACTTCTTGTTTGTAAAATTCTTG	<i>cps2O</i> ¹⁸⁹⁵²⁻¹⁸⁹²³		
O4 (+)	catATGATTTTAATTACAGGGGCAAATG	cps2O ¹⁸¹⁰¹⁻¹⁸¹²⁵		
T10 (+)	gcgcggtaccATGAAGAAGTCAGTTTATATCATTGGTTC	<i>cps2T</i> ⁶⁴⁴⁵⁻⁶⁴⁷³		
T11 (-)	gcgcggccgcTTACTCACTTTTTCCCCCTTCAAAC	cps2T ⁷⁶²⁹⁻⁷⁶⁰⁵		
T12 (+)	gcgcctcgagGAAGAGATAGTGGTGGATTATGAGGAAG	<i>cps2T</i> ⁷⁵⁷⁶⁻⁷⁶⁰³		
T13 (+)	catATGAAGAAGTCAGTTTATATCATTGGTTC	$cps2T^{6445-6473}$		
T14 (-)	<i>ctcgag</i> TTACTCACTTTTTCCCCCCTTCAAAC	$cps2T^{7629-7605}$		
DJ-01 (+)	gcgcggccgcGAGGAAGGAAATAATAA	aphA-3 ¹⁷²⁹⁻¹⁷⁴⁶		
DJ-02 (-)	gcgc <i>ctcgag</i> GTACTAAAACAATTCATCCA	aphA-3 ²⁵⁴³⁻²⁵²³		

^a Forward and reverse primers are indicated by + and -, respectively.

^b Lower case letters indicate restriction enzyme sites inserted for digestion. Restriction enzyme sites are italicized.

^c Superscripts indicate the start and end positions of the primers in the type 2 D39 capsule locus. (GenBank accession no. AF026471) and pDL276 *aphA-3* (GenBank accession no. AF216803)

TABLE S3. Frequencies of acquiring deletion mutations

Recipients were the D39 parent and the D39 derivative BX515, which contains a cps2E point

mutation

		Transformant Frequency ^a	
Mutation	Exp # ^b	D39	BX515
$\Delta cps2T^{c}$	1	290/116,000 (2.5 x 10 ⁻³)	410/25,000 (1.6 x 10 ⁻²)
	2	$\frac{710/34,000 (2.1 \times 10^{-2})}{1.2 \times 10^{-2} (9.2 \times 10^{-3})}$	$\frac{380/48,000(7.9 \times 10^{-3})}{1.2 \times 10^{-2} (4.2 \times 10^{-3})}$
	mean	$1.2 \ge 10^{-2} (9.2 \ge 10^{-3})$	$1.2 \ge 10^{-2} (4.2 \ge 10^{-3})$
$\Delta cps2F^{c}$	1	280/92,000 (3.0 x 10 ⁻³)	74/27,000 (2.7 x 10 ⁻³)
1	2	$\frac{270/51,000}{4.2 \times 10^{-3}} (5.3 \times 10^{-3})$	$\frac{64/22,000(2.9 \times 10^{-3})}{2.8 \times 10^{-3}(8.4 \times 10^{-5})}$
	mean	$4.2 \times 10^{-3} (1.1 \times 10^{-3})$	$2.8 \times 10^{-3} (8.4 \times 10^{-5})$
$\Delta cps2G^{c}$	1	3/90,000 (3.3 x 10 ⁻⁵)	54/26,000 (2.1 x 10 ⁻³)
-	2	$2/64,000(3.1 \times 10^{-5})$	$\frac{79/25,000 (3.2 \times 10^{-3})}{2.6 \times 10^{-3} (5.4 \times 10^{-4})^{d}}$
	mean	$3.2 \times 10^{-5} (1.0 \times 10^{-6})$	$2.6 \times 10^{-3} (5.4 \times 10^{-4})^{d}$
$\Delta cps2I^{c}$	1	4/87,000 (4.6 x 10 ⁻⁵)	7/25,000 (2.8 x 10 ⁻⁴)
I ···	2	$1/88,000 (1.1 \times 10^{-5})$	$11/32,000 (3.4 \times 10^{-4})$
	mean	$2.9 \times 10^{-5} (1.7 \times 10^{-5})$	$3.1 \times 10^{-4} (3.2 \times 10^{-5})^{d}$

^a within each mutation group, data above the line are the number of antibiotic resistant CFU/total CFU for two independent experiments, with the calculated frequencies shown in parentheses. The data below the lines are the means of the frequencies from the two experiments, with \pm standard errors shown in parentheses.

^b experiment number for two independent experiments using different batches of competent *S*. *pneumoniae* and different preparations of donor DNA.

^c donor DNAs used for deletions were obtained from *E. coli* constructs indicated in Table S1.

^d significantly different (P<0.05) from D39, as determined using a two-tailed unpaired Student *t*-test.

SUPPLEMENTAL REFERENCES

1. **Cartee, R. T., W. T. Forsee, M. H. Bender, K. D. Ambrose, and J. Yother.** 2005. CpsE from type 2 *Streptococcus pneumoniae* catalyzes the reversible addition of glucose-1-phosphate to a polyprenyl phosphate acceptor, initiating type 2 capsule repeat unit formation. J Bacteriol **187:**7425-33.

2. **Dunny, G. M., L. N. Lee, and D. J. LeBlanc.** 1991. Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol **57**:1194-201.

3. Macrina, F. L., J. A. Tobian, K. R. Jones, R. P. Evans, and D. B. Clewell. 1982. A cloning vector able to replicate in *Escherichia coli* and *Streptococcus sanguis*. Gene **19:**345-53.

4. **Tao, L., D. J. LeBlanc, and J. J. Ferretti.** 1992. Novel streptococcal-integration shuttle vectors for gene cloning and inactivation. Gene **120**:105-10.

5. Yother, J., G. L. Handsome, and D. E. Briles. 1992. Truncated forms of PspA that are secreted from *Streptococcus pneumoniae* and their use in functional studies and cloning of the *pspA* gene. J Bacteriol **174:**610-8.